Performance and morphology of centrifugally spun Co3O4/C composite fibers for anode materials in lithium-ion batteries

被引:13
|
作者
Ayala, Jonathan [1 ]
Ramirez, Daniel [2 ]
Myers, Jason C. [3 ]
Lodge, Timothy P. [4 ,5 ]
Parsons, Jason [2 ]
Alcoutlabi, Mataz [1 ]
机构
[1] Univ Texas Rio Grande Valley, Dept Mech Engn, 1201 W Univ Dr, Edinburg, TX 78539 USA
[2] Univ Texas Rio Grande Valley, Dept Chem, 1 W Univ Blvd, Brownsville, TX 78521 USA
[3] Univ Minnesota, Coll Sci & Engn, 55 Shepherd Labs, Minneapolis, MN 55455 USA
[4] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[5] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
关键词
ELECTROCHEMICAL PERFORMANCE; RECENT PROGRESS; COBALT; OXIDES; ELECTROSPUN; ALPHA-FE2O3; NANOFIBERS; CELLS;
D O I
10.1007/s10853-021-06285-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Centrifugally spun polyacrylonitrile (PAN) microfibers surface-coated with Co3O4 nanoparticles were prepared as precursors to produce coated Co3O4 carbon-fiber (CCF) composites for lithium-ion battery anodes. The Co3O4/C composite-fiber anodes were obtained after the stabilization of surface-coated Co3O4/PAN fibers at 200 degrees C for four hours, and subsequent carbonization at 600 degrees C for 6 hours. The electrochemical performance of the Co3O4/C composite-fiber anode with different active material loading was evaluated by using galvanostatic charge/discharge, rate performance, cyclic voltammetry, and electrochemical impedance spectroscopy experiments. The CCF anode delivered a specific charge capacity of 632 and 420 mAh g(-1) after 100 cycles at 100 and 200 mA g(-1), respectively, and exhibited good rate capability. An improved electrochemical performance of the CCF was observed compared to the carbon-fiber (CF) anode (300 mAh g(-1)), which was attributed to the interaction between CFs and Co3O4 nanoparticles. The synthesis method presented in this work can provide an effective avenue for the fabrication of surface coated-fiber materials, including free-standing anode materials for lithium-ion batteries with increased specific capacity and improved electrochemical performance compared to carbon-fiber electrodes.
引用
收藏
页码:16010 / 16027
页数:18
相关论文
共 50 条
  • [1] Centrifugally Spun α-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries
    Zuniga, Luis
    Gonzalez, Gabriel
    Chavez, Roberto Orrostieta
    Myers, Jason C.
    Lodge, Timothy P.
    Alcoutlabi, Mataz
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [2] Aggregation-Morphology-Dependent Electrochemical Performance of Co3O4 Anode Materials for Lithium-Ion Batteries
    Kong, Linglong
    Wang, Lu
    Sun, Deye
    Meng, Su
    Xu, Dandan
    He, Zaixin
    Dong, Xiaoying
    Li, Yongfeng
    Jin, Yongcheng
    MOLECULES, 2019, 24 (17):
  • [3] Synthesis and electrochemical performance of Co3O4/C composite anode for lithium ion batteries
    Guo Hua-jun
    Sun Qian-ming
    Li Xin-hai
    Wang Zhi-xing
    Peng Wen-jie
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2009, 19 (02) : 372 - 376
  • [4] Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
    Wang, Shaofeng
    Zhu, Yanping
    Xu, Xiaomin
    Sunarso, Jaka
    Shao, Zongping
    ENERGY, 2017, 125 : 569 - 575
  • [5] Co3O4 Nanocages for High-Performance Anode Material in Lithium-Ion Batteries
    Yan, Nan
    Hu, Lin
    Li, Yan
    Wang, Yu
    Zhong, Hao
    Hu, Xianyi
    Kong, Xiangkai
    Chen, Qianwang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (12) : 7227 - 7235
  • [6] Electrochemical Performance of Co3O4 Nanofibers As Anode Material for Lithium-Ion Batteries
    Xiaojun Jianfeng Dai
    Jifei Zhu
    Qing Liu
    Weixue Wang
    Yufeng Li
    Russian Journal of Physical Chemistry A, 2019, 93 : 2067 - 2071
  • [7] Electrochemical Performance of Co3O4 Nanofibers As Anode Material for Lithium-Ion Batteries
    Dai, Jianfeng
    Zhu, Xiaojun
    Liu, Jifei
    Wang, Qing
    Li, Weixue
    Qi, Yufeng
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 93 (10) : 2067 - 2071
  • [8] Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries
    Zhai, Ximei
    Xu, Xiangming
    Zhu, Xiaoliang
    Zhao, Yongjie
    Li, Jingbo
    Jin, Haibo
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (02) : 1356 - 1364
  • [9] Recent Development of Co3O4 and Its Composites as Anode Materials of Lithium-ion Batteries
    Huang Guoyong
    Xu Shengming
    Wang Junlian
    Li Linyan
    Wang Xuejun
    ACTA CHIMICA SINICA, 2013, 71 (12) : 1589 - 1597
  • [10] Micro/Nanostructured Co3O4 as an Anode Material for Lithium-Ion Batteries
    Saini, Himani
    Vishwanathan, Savithri
    Sil, Sanchita
    Kumar, N. S.
    Matte, H. S. S. Ramakrishna
    ACS APPLIED NANO MATERIALS, 2025, 8 (02) : 917 - 923