An extension of maximum principle with some applications

被引:1
作者
PARSIAN, Ali [1 ]
机构
[1] Tafresh Univ, Dept Math, Tafresh, Iran
关键词
Boundary behavior; elliptic operator; maximum principle; positive definite matrix; FRACTIONAL DIFFUSION-EQUATIONS; ELLIPTIC-SYSTEMS; P-LAPLACIAN; TIME; EXISTENCE;
D O I
10.3906/mat-1910-61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U subset of R-n (res. D subset of R-n) be an open (res. a compact) subset, and let L be an elliptic operator defined on C-2(U, R) (res. C-2(D, R) ). In the present paper, we are going to extend the maximum principle for the function f is an element of C-2(U, R) (res. f is an element of C-2(D, R) ) satisfying the equation Lf = epsilon, where epsilon is a real everywhere nonzero continuous function on U (res. D ). Finally, we obtain some applications in mathematics and physics.
引用
收藏
页码:66 / 80
页数:15
相关论文
共 38 条
  • [1] Al-Refai M., 2016, Analysis, V36, P123, DOI [10.1515/anly-2015-5011, DOI 10.1515/ANLY-2015-5011]
  • [2] Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives
    Al-Refai, Mohammed
    Luchko, Yuri
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 40 - 51
  • [3] Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications
    Al-Refai, Mohammed
    Luchko, Yuri
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) : 483 - 498
  • [4] MAXIMUM PRINCIPLE FOR CERTAIN GENERALIZED TIME AND SPACE FRACTIONAL DIFFUSION EQUATIONS
    Alsaedi, Ahmed
    Ahmad, Bashir
    Kirane, Mokhtar
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (01) : 163 - 175
  • [5] OPTIMAL CONTROL PROBLEM AND MAXIMUM PRINCIPLE FOR FRACTIONAL ORDER COOPERATIVE SYSTEMS
    Bahaa, G. M.
    [J]. KYBERNETIKA, 2019, 55 (02) : 337 - 358
  • [6] Strong Maximum Principle for Some Quasilinear Dirichlet Problems Having Natural Growth Terms
    Boccardo, Lucio
    Orsina, Luigi
    [J]. ADVANCED NONLINEAR STUDIES, 2020, 20 (02) : 503 - 510
  • [7] Maximum principle and its application for the nonlinear time-fractional diffusion equations with Cauchy-Dirichlet conditions
    Borikhanov, Meiirkhan
    Kirane, Mokhtar
    Torebek, Berikbol T.
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 81 : 14 - 20
  • [8] Brown JW, 2004, Complex variables and applications
  • [9] Maximum principles for time-fractional Caputo-Katugampola diffusion equations
    Cao, Liang
    Kong, Hua
    Zeng, Sheng-Da
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 2257 - 2267
  • [10] A MAXIMUM PRINCIPLE FOR FRACTIONAL DIFFUSION DIFFERENTIAL EQUATIONS
    Chan, C. Y.
    Liu, H. T.
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2016, 74 (03) : 421 - 427