Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease

被引:73
作者
Fontecha-Barriuso, Miguel [1 ,2 ]
Lopez-Diaz, Ana M. [1 ]
Guerrero-Mauvecin, Juan [1 ]
Miguel, Veronica [3 ]
Ramos, Adrian M. [1 ,2 ]
Sanchez-Nino, Maria D. [1 ,2 ,4 ]
Ruiz-Ortega, Marta [1 ,2 ,5 ]
Ortiz, Alberto [1 ,2 ,5 ,6 ]
Sanz, Ana B. [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Inst Invest Sanitaria, Lab Nefrol Expt, Fdn Jimenez Diaz, Madrid 28049, Spain
[2] Redes Invest Cooperat Orientadas Resultados Salud, Madrid 28049, Spain
[3] RWTH Aachen Univ Hosp, Inst Expt Med & Syst Biol, D-52062 Aachen, Germany
[4] Univ Autonoma Madrid, Dept Pharmacol, Madrid 28049, Spain
[5] Univ Autonoma Madrid, Dept Med, Madrid 28049, Spain
[6] Inst Reina Sofia Invest Nefrol, Madrid 28049, Spain
关键词
acute kidney injury; chronic kidney disease; mitochondria; oxidative stress; PGC-1; alpha; TFEB-MEDIATED AUTOPHAGY; PODOCYTE ENERGY-METABOLISM; ATTENUATES RENAL INJURY; PROXIMAL TUBULE; NLRP3; INFLAMMASOME; REGULATED NECROSIS; N-ACETYLCYSTEINE; BETA-OXIDATION; DB/DB MICE; IN-VIVO;
D O I
10.3390/antiox11071356
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected conditions, and CKD is projected to become the fifth leading global cause of death by 2040. New therapeutic approaches are needed. Mitochondrial dysfunction and oxidative stress have emerged as drivers of kidney injury in acute and chronic settings, promoting the AKI-to-CKD transition. In this work, we review the role of mitochondrial dysfunction and oxidative stress in AKI and CKD progression and discuss novel therapeutic approaches. Specifically, evidence for mitochondrial dysfunction in diverse models of AKI (nephrotoxicity, cytokine storm, and ischemia-reperfusion injury) and CKD (diabetic kidney disease, glomerulopathies) is discussed; the clinical implications of novel information on the key role of mitochondria-related transcriptional regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha, transcription factor EB (PGC-1 alpha, TFEB), and carnitine palmitoyl-transferase 1A (CPT1A) in kidney disease are addressed; the current status of the clinical development of therapeutic approaches targeting mitochondria are updated; and barriers to the clinical development of mitochondria-targeted interventions are discussed, including the lack of clinical diagnostic tests that allow us to categorize the baseline renal mitochondrial dysfunction/mitochondrial oxidative stress and to monitor its response to therapeutic intervention. Finally, key milestones for further research are proposed.
引用
收藏
页数:21
相关论文
共 166 条
[1]   Bioenergetic characterization of mouse podocytes [J].
Abe, Yoshifusa ;
Sakairi, Toru ;
Kajiyama, Hiroshi ;
Shrivastav, Shashi ;
Beeson, Craig ;
Kopp, Jeffrey B. .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2010, 299 (02) :C464-C476
[2]   Mitochondrion-driven nephroprotective mechanisms of novel glucose lowering medications [J].
Afsar, Baris ;
Hornum, Mads ;
Afsar, Rengin Elsurer ;
Ertuglu, Lale A. ;
Ortiz, Alberto ;
Covic, Adrian ;
van Raalte, Daniel H. ;
Cherney, David Z., I ;
Kanbay, Mehmet .
MITOCHONDRION, 2021, 58 :72-82
[3]   Impaired β-Oxidation and Altered Complex Lipid Fatty Acid Partitioning with Advancing CKD [J].
Afshinnia, Farsad ;
Rajendiran, Thekkelnaycke M. ;
Soni, Tanu ;
Byun, Jaeman ;
Wernisch, Stefanie ;
Sas, Kelli M. ;
Hawkins, Jennifer ;
Bellovich, Keith ;
Gipson, Debbie ;
Michailidis, George ;
Pennathur, Subramaniam .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2018, 29 (01) :295-306
[4]   Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice [J].
Ahmed, Lamiaa A. ;
Shehata, Nagwa I. ;
Abdelkader, Noha F. ;
Khattab, Mahmoud M. .
PLOS ONE, 2014, 9 (10)
[5]   High glucose induces phosphorylation and oxidation of mitochondrial proteins in renal tubular cells: A proteomics approach [J].
Aluksanasuwan, Siripat ;
Plumworasawat, Sirikanya ;
Malaitad, Thanyalak ;
Chaiyarit, Sakdithep ;
Thongboonkerd, Visith .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   aTargeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL-lpr mice (vol 7, e000387, 2020) [J].
Fortner, K. A. ;
Blanco, L. P. ;
Buskiewicz, I .
LUPUS SCIENCE & MEDICINE, 2020, 7 (01)
[7]   An in vivo and in vitro study on the protective effects of N-acetylcysteine on mitochondrial dysfunction in isoproterenol treated myocardial infarcted rats [J].
Basha, Rafeek Hidhayath ;
Priscilla, David Hansi .
EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY, 2013, 65 (1-2) :7-14
[8]   Mitochondrial energetics in the kidney [J].
Bhargava, Pallavi ;
Schnellmann, Rick G. .
NATURE REVIEWS NEPHROLOGY, 2017, 13 (10) :629-646
[9]   Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis [J].
Birk, A. V. ;
Chao, W. M. ;
Bracken, C. ;
Warren, J. D. ;
Szeto, H. H. .
BRITISH JOURNAL OF PHARMACOLOGY, 2014, 171 (08) :2017-2028
[10]   The Mitochondrial-Targeted Compound SS-31 Re-Energizes Ischemic Mitochondria by Interacting with Cardiolipin [J].
Birk, Alexander V. ;
Liu, Shaoyi ;
Soong, Yi ;
Mills, William ;
Singh, Pradeep ;
Warren, J. David ;
Seshan, Surya V. ;
Pardee, Joel D. ;
Szeto, Hazel H. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2013, 24 (08) :1250-1261