Symmetries, inversion formulas, and image reconstruction for optical tomography

被引:74
作者
Markel, VA [1 ]
Schotland, JC
机构
[1] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 05期
基金
美国国家卫生研究院;
关键词
D O I
10.1103/PhysRevE.70.056616
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the image recostruction problem for optical tomography with diffuse light. The associated inverse scattering problem is analyzed by making use of particular symmetries of the scattering data. The effects of sampling and limited data are analyzed for several different experimental modalities. and computationally efficient reconstruction algorithms are obtained. These algorithms are suitable for the reconstruction of images from very large data sets.
引用
收藏
页码:19 / 1
页数:19
相关论文
共 50 条
[31]   Efficient reliable image reconstruction schemes for diffuse optical tomography [J].
Egger, Herbert ;
Schlottbom, Matthias .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 19 (02) :155-180
[32]   Accelerating nonlinear reconstruction in laminar optical tomography by use of recursive SVD inversion [J].
Jia, Mengyu ;
Jiang, Jingying ;
Ma, Wenjuan ;
Li, Chenxi ;
Wang, Shuang ;
Zhao, Huijuan ;
Gao, Feng .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (09) :4275-4293
[33]   Inversion formulas for the tomographic reconstruction in the plane detector use [J].
Kas'yanova, S.N. ;
Trofimov, O.E. .
Avtometriya, 2000, (03) :32-44
[34]   Expectation maximization (EM) algorithms using polar symmetries for computed tomography (CT) image reconstruction [J].
Rodriguez-Alvarez, M. J. ;
Soriano, A. ;
Iborra, A. ;
Sanchez, F. ;
Gonzalez, A. J. ;
Conde, P. ;
Hernandez, L. ;
Moliner, L. ;
Orero, A. ;
Vidal, L. F. ;
Benlloch, J. M. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (08) :1053-1061
[35]   Reconstruction formulas in phase-contrast tomography [J].
Bronnikov, AV .
OPTICS COMMUNICATIONS, 1999, 171 (4-6) :239-244
[36]   Inverse problem in optical diffusion tomography. I. Fourier-Laplace inversion formulas [J].
Markel, VA ;
Schotland, JC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (06) :1336-1347
[37]   Inverse problem in optical diffusion tomography. I. Fourier-Laplace inversion formulas [J].
Markel, Vadim A. ;
Schotland, John C. .
Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18 (06) :1336-1347
[38]   Quasi-Newton methods in iterative image reconstruction for optical tomography [J].
Klose, AD ;
Hielscher, AH ;
Beuthan, J .
MEDICAL IMAGING 2000: IMAGE PROCESSING, PTS 1 AND 2, 2000, 3979 :1323-1330
[39]   Distributed-source approach to image reconstruction in diffuse optical tomography [J].
Yaroslavsky, IV ;
Yaroslavsky, AN ;
Battarbee, H ;
Sisson, C ;
Rodriguez, J .
OPTICAL BIOPSY III, 2000, 3917 :219-224
[40]   Dynamically adaptive mesh refinement technique for image reconstruction in optical tomography [J].
Soloviev, VY ;
Krasnosselskaia, LV .
APPLIED OPTICS, 2006, 45 (12) :2828-2837