Navier-Stokes equations with vorticity in Besov spaces of negative regular indices

被引:21
作者
Zhang, Zujin [1 ]
Yang, Xian [2 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Ganzhou Teachers Coll, Foreign Language Dept, Ganzhou 341000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Regularity criteria; Navier-Stokes equations; BLOW-UP CRITERION; WEAK SOLUTIONS; INTERIOR REGULARITY;
D O I
10.1016/j.jmaa.2016.03.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the Cauchy problem for the three-dimensional Navier-Stokes equations, and shows that the condition del x u is an element of L2/2-r (0, T; (B) over dot(infinity,infinity)(-r)), 0 < r < 2 ensures the regularity of the solution on (0, T). This improves and extends many previous results. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 419
页数:5
相关论文
共 17 条
[1]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[2]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[3]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[4]   A remark on the blow-up criterion of strong solutions to the Navier-Stokes equations [J].
Gala, Sadek .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) :9488-9491
[5]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[6]  
Hopf E., 1951, Math. Nachr., V4, P213, DOI DOI 10.1002/MANA.3210040121
[7]   Bilinear estimates in BMO and the Navier-Stokes equations [J].
Kozono, H ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (01) :173-194
[8]   Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations [J].
Kozono, H ;
Shimada, Y .
MATHEMATISCHE NACHRICHTEN, 2004, 276 :63-74
[9]   The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations [J].
Kozono, H ;
Ogawa, T ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (02) :251-278
[10]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248