The effect of grain size on strain rate sensitivity and activation volume -: from nano to ufg nickel

被引:44
作者
Vehoff, Horst [1 ]
Lemaire, Delphine [1 ]
Schueler, Kerstin [1 ]
Waschkies, Thomas [1 ]
Yang, Bo [1 ]
机构
[1] Univ Saarland, FR Mat Sci & Methods 84, D-66123 Saarbrucken, Germany
关键词
thermal activation; ultra fine grained Ni; creep; nanoindentation; strain rate sensitivity;
D O I
10.3139/146.101464
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The strain rate sensitivity of nanocrystalline nickel was studied at different temperatures in tensile tests and with a nanoindenter in order to examine the effect of grain size on the different deformation mechanisms of nanocrystalline materials. The experiments yielded, depending on temperature and strain rate, the strain rate sensitivity, the activation volume and the creep exponents as a function of stress and grain size. From the creep experiments the transition between grain boundary sliding and dislocation climb as a function of temperature was obtained. The strain rate jump tests gave extremely small activation volumes, nearly a factor of 100 smaller than in conventional nickel as a function of grain size. To help in understanding this behaviour the strain rate sensitivity of single grains was tested with a nanoindenter. The results clearly showed that the primary interaction of dislocations with grain boundaries is the reason for the strong rate effects and small activation volumes observed.
引用
收藏
页码:259 / 268
页数:10
相关论文
共 36 条
[1]   Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J].
Asaro, RJ ;
Suresh, S .
ACTA MATERIALIA, 2005, 53 (12) :3369-3382
[2]   Hardness and strain rate sensitivity of nanocrystalline Cu [J].
Chen, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2006, 54 (11) :1913-1918
[3]   Nanocrystalline electrodeposited Ni: microstructure and tensile properties [J].
Dalla Torre, F ;
Van Swygenhoven, H ;
Victoria, M .
ACTA MATERIALIA, 2002, 50 (15) :3957-3970
[4]   Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel [J].
Dalla Torre, F ;
Spätig, P ;
Schäublin, R ;
Victoria, M .
ACTA MATERIALIA, 2005, 53 (08) :2337-2349
[5]   Size-affected single-slip behavior of pure nickel microcrystals [J].
Dimiduk, DM ;
Uchic, MD ;
Parthasarathy, TA .
ACTA MATERIALIA, 2005, 53 (15) :4065-4077
[6]   Indentation size effect in metallic materials:: Correcting for the size of the plastic zone [J].
Durst, K ;
Backes, B ;
Göken, M .
SCRIPTA MATERIALIA, 2005, 52 (11) :1093-1097
[7]   Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching [J].
Gaillard, Y ;
Tromas, C ;
Woirgard, J .
ACTA MATERIALIA, 2003, 51 (04) :1059-1065
[8]   Microstructural properties of superalloys investigated by nanoindentations in an atomic force microscope [J].
Göken, M ;
Kempf, M .
ACTA MATERIALIA, 1999, 47 (03) :1043-1052
[9]  
Göken M, 2001, Z METALLKD, V92, P1061
[10]   Crossover from grain boundary sliding to rotational deformation in nanocrystalline materials [J].
Gutkin, MY ;
Ovid'ko, IA ;
Skiba, NV .
ACTA MATERIALIA, 2003, 51 (14) :4059-4071