BOUNDEDNESS IN LOGISTIC KELLER-SEGEL MODELS WITH NONLINEAR DIFFUSION AND SENSITIVITY FUNCTIONS

被引:2
作者
Wang, Qi [1 ]
Yang, Jingyue [1 ]
Yu, Feng [1 ,2 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Math, 555 Liutai Ave, Chengdu 611130, Sichuan, Peoples R China
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
中国国家自然科学基金;
关键词
Chemotaxis; nonlinear diffusion; global existence; boundedness; logistic growth; PARABOLIC-PARABOLIC TYPE; GLOBAL EXISTENCE; SYSTEM; CHEMOTAXIS; FINITE; TIME;
D O I
10.3934/dcds.2017216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following fully parabolic Keller-Segel system {u(t) = del center dot(D(u)del u - S(u)del v) - u(1-u(gamma)), x is an element of Omega, t>0, v(t) = Delta v - v+u, x is an element of Omega, t>0, partial derivative u/partial derivative nu = partial derivative u/partial derivative nu = 0, x is an element of partial derivative Omega, t>0 over a multi dimensional bounded domain Q C R-N, N >= 2. Here D(u) and S(u) are smooth functions satisfying: D(0) > 0, D(u) >= K1u(m1), and S(u) <= K(2)u(m2), for all u >= 0, for some constants K-i is an element of R+ , m(i) is an element of R, i = 1, 2. It is proved that, when the parameter pair (mi, m2) lies in some specific regions, the system admits global classical solutions and they are uniformly bounded in time. We cover and extend [m(1), m(2)], in particular when N >= 3 and gamma >= 1, and [i, 29] when m(1)> gamma- 2/N if gamma is an element of(0,1) or m(1) > gamma-4/N+2 if gamma is an element of[1,infinity). Moreover, according to our results, the index 2/N is, in contrast to the model without cellular growth, no longer critical to the global existence or collapse of this system.
引用
收藏
页码:5021 / 5036
页数:16
相关论文
共 29 条
[1]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[2]   Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source [J].
Cao, Xinru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :181-188
[3]   New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (06) :2080-2113
[4]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[5]  
Herbert A., 1993, TEUBNER TEXTE MATH, P9, DOI [DOI 10.1007/978-3-663-11336-2_1, DOI 10.1007/978-3-663-11336-2]
[6]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[7]  
Horstmann D., 2004, JAHRESBER DTSCH MATH, V106, P51
[8]  
Horstmann D., 2003, Jahresber. Dtsch. Math.-Ver., V105, P103
[9]   Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains [J].
Ishida, Sachiko ;
Seki, Kiyotaka ;
Yokota, Tomomi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) :2993-3010
[10]   BLOW-UP IN FINITE OR INFINITE TIME FOR QUASILINEAR DEGENERATE KELLER-SEGEL SYSTEMS OF PARABOLIC-PARABOLIC TYPE [J].
Ishida, Sachiko ;
Yokota, Tomomi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (10) :2569-2596