Gelfand-Kirillov dimension of generalized Weyl algebras (In memory of Guenter Rudolf Krause (1941-2015))

被引:4
作者
Zhao, Xiangui [1 ]
Mo, Qiuhui [1 ]
Zhang, Yang [2 ]
机构
[1] Huizhou Univ, Dept Math, Huizhou 516007, Guangdong, Peoples R China
[2] Univ Manitoba, Dept Math, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Down-up algebra; Gelfand-Kirillov dimension; generalized Weyl algebra; Weyl algebra; DOWN-UP ALGEBRAS; SKEW POLYNOMIAL-RINGS; DIFFERENTIAL-DIFFERENCE ALGEBRAS; KRULL DIMENSION; AUTOMORPHISMS; COEFFICIENTS; MODULES;
D O I
10.1080/00927872.2018.1444169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a generalized Weyl algebra A of degree 1 with the base algebra D, we prove that the difference of the Gelfand-Kirillov dimension of A and that of D could be any positive integer or infinity. Under mild conditions, this difference is exactly 1. As applications, we calculate the Gelfand-Kirillov dimensions of various algebras of interest, including the (quantized) Weyl algebras, ambiskew polynomial rings, noetherian (generalized) down-up algebras, iterated Ore extensions, quantum Heisenberg algebras, universal enveloping algebras of Lie algebras, quantum GWAs, etc.
引用
收藏
页码:4403 / 4413
页数:11
相关论文
共 25 条