Factorization of differential operators, quasideterminants, and nonabelian Toda field equations

被引:0
作者
Etingof, P [1 ]
Gelfand, I
Retakh, V
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
关键词
MODEL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We integrate nonabelian Toda field equations [Kr] for root systems of types A, B, C, for functions with values in any associative algebra. The solution is expressed via quasideterminants introduced in [GR1],[GR2], [GR4]. In the appendix we review some results concerning noncommutative versions of other classical integrable equations.
引用
收藏
页码:413 / 425
页数:13
相关论文
共 19 条
[1]  
[Anonymous], ADV SER MATH PHYS
[2]  
[Anonymous], 1996, LECT NOTES MATH
[3]  
[Anonymous], 1992, FUNKC ANAL PRILOZH
[4]   CRITICAL CORRELATIONS IN A Z-INVARIANT INHOMOGENEOUS ISING-MODEL [J].
AUYANG, H ;
PERK, JHH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1987, 144 (01) :44-104
[5]  
CONNES A, IN PRESS LETT MATH P
[6]  
DARBOUX G, 1889, LECONS THEORIE GENER, pCH6
[7]  
GELFAND I, 1993, PUBL LACIM UQAM, V14, P1
[8]  
GELFAND I, 1996, GELF MATH SEM 1993 9
[9]   DETERMINANTS OF MATRICES OVER NONCOMMUTATIVE RINGS [J].
GELFAND, IM ;
RETAKH, VS .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (02) :91-102
[10]   SOLUTION TO A GENERALIZED TODA LATTICE AND REPRESENTATION THEORY [J].
KOSTANT, B .
ADVANCES IN MATHEMATICS, 1979, 34 (03) :195-338