General Paradigm of Edge-Based Internet of Things Data Mining for Geohazard Prevention

被引:2
作者
Qin, Jiayu [1 ]
Mei, Gang [1 ]
Ma, Zhengjing [1 ]
Piccialli, Francesco [2 ]
机构
[1] China Univ Geosci Beijing, Sch Engn & Technol, Beijing 100083, Peoples R China
[2] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, I-80100 Naples, Italy
基金
中国国家自然科学基金;
关键词
data mining and analysis; edge computing; geohazard prevention; internet of things (IoT); monitoring and early warning; NEURAL-NETWORK; PREDICTION; LANDSLIDE; VISION; DESIGN; SYSTEM; IOT;
D O I
10.1089/big.2020.0392
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Geological hazards (geohazards) are geological processes or phenomena formed under external-induced factors causing losses to human life and property. Geohazards are sudden, cause great harm, and have broad ranges of influence, which bring considerable challenges to geohazard prevention. Monitoring and early warning are the most common strategies to prevent geohazards. With the development of the internet of things (IoT), IoT-based monitoring devices provide rich and fine data, making geohazard monitoring and early warning more accurate and effective. IoT-based monitoring data can be transmitted to a cloud center for processing to provide credible data references for geohazard early warning. However, the massive numbers of IoT devices occupy most resources of the cloud center, which increases the data processing delay. Moreover, limited bandwidth restricts the transmission of large amounts of geohazard monitoring data. Thus, in some cases, cloud computing is not able to meet the real-time requirements of geohazard early warning. Edge computing technology processes data closer to the data source than to the cloud center, which provides the opportunity for the rapid processing of monitoring data. This article presents the general paradigm of edge-based IoT data mining for geohazard prevention, especially monitoring and early warning. The paradigm mainly includes data acquisition, data mining and analysis, and data interpretation. Moreover, a real case is used to illustrate the details of the presented general paradigm. Finally, this article discusses several key problems for the general paradigm of edge-based IoT data mining for geohazard prevention.
引用
收藏
页码:373 / 389
页数:17
相关论文
共 86 条
[1]   Design of A Low-Cost Wireless Indoor Air Quality Sensor Network System [J].
Abraham, Sherin ;
Li, Xinrong .
INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS, 2016, 23 (01) :57-65
[2]   The role of big data analytics in Internet of Things [J].
Ahmed, Ejaz ;
Yaqoob, Ibrar ;
Hashem, Ibrahim Abaker Targio ;
Khan, Imran ;
Ahmed, Abdelmuttlib Ibrahim Abdalla ;
Imran, Muhammad ;
Vasilakos, Athanasios V. .
COMPUTER NETWORKS, 2017, 129 :459-471
[3]  
Anderson, 2014, ENVIRON ENG GEOSCI, V20, P404, DOI DOI 10.2113/GSEEGEOSCI.20.4.404
[4]  
[Anonymous], 2006, P 23 INT C MACHINE L, DOI DOI 10.1145/1143844.1143918
[5]  
[白铂 Bai Bo], 2020, [中国科学. 数学, Scientia Sinica Mathematica], V50, P367
[6]   Edge-Computing Video Analytics for Real-Time Traffic Monitoring in a Smart City [J].
Barthelemy, Johan ;
Verstaevel, Nicolas ;
Forehead, Hugh ;
Perez, Pascal .
SENSORS, 2019, 19 (09)
[7]  
Chakraborty T, 2017, I SYMP CONSUM ELECTR, P47, DOI 10.1109/ISCE.2017.8355544
[8]   Data mining: An overview from a database perspective [J].
Chen, MS ;
Han, JW ;
Yu, PS .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1996, 8 (06) :866-883
[9]   ARIMA models to predict next-day electricity prices [J].
Contreras, J ;
Espínola, R ;
Nogales, FJ ;
Conejo, AJ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (03) :1014-1020
[10]   The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing [J].
Crone, Sven F. ;
Lessmann, Stefan ;
Stahlbock, Robert .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 173 (03) :781-800