Composite nonlinear multiset canonical correlation analysis for multiview feature learning and recognition

被引:3
作者
Yuan, Yun-Hao [1 ,2 ]
Shen, Xiaobo [3 ]
Li, Yun [1 ]
Li, Bin [1 ]
Gou, Jianping [4 ]
Qiang, Jipeng [1 ]
Zhang, Xinfeng [1 ]
Sun, Quan-Sen [3 ]
机构
[1] Yangzhou Univ, Sch Informat Engn, Yangzhou 225127, Jiangsu, Peoples R China
[2] Fudan Univ, Sch Comp Sci & Technol, Shanghai, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Comp Sci, Nanjing, Jiangsu, Peoples R China
[4] Jiangsu Univ, Sch Comp Sci, Zhenjiang, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
feature learning; multiple kernel learning; multiset canonical correlation; multiview learning; nonlinear function; SETS; PROJECTIONS;
D O I
10.1002/cpe.5476
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a composite nonlinear multiset canonical correlation projections (CNMCPs) framework where orthogonal constraints are imposed in each set. This makes CNMCP capable of learning uncorrelated low-dimensional features with minimum redundancy in Hilbert space. With the CNMCP framework, we further present a particular algorithm called multikernel multiset canonical correlations or mKMCC, which introduces different weights into multiple nonlinear functions in all views. An alternating iterative optimization is designed for computational solution. Numerous experimental results on practical datasets have demonstrated the effectiveness and robustness of mKMCC, in contrast with existing kernel correlation learning approaches.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] Convex Formulation for Kernel PCA and Its Use in Semisupervised Learning
    Alaiz, Carlos M.
    Fanuel, Michael
    Suykens, Johan A. K.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (08) : 3863 - 3869
  • [2] [Anonymous], 2016, COMPUT VIS MEDIA
  • [3] Multiple Kernel Learning for Visual Object Recognition: A Review
    Bucak, Serhat S.
    Jin, Rong
    Jain, Anil K.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (07) : 1354 - 1369
  • [4] Graph Multiview Canonical Correlation Analysis
    Chen, Jia
    Wang, Gang
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (11) : 2826 - 2838
  • [5] ON A MULTIVARIATE EIGENVALUE PROBLEM .1. ALGEBRAIC-THEORY AND A POWER METHOD
    CHU, MT
    WATTERSON, JL
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (05) : 1089 - 1106
  • [6] Information Fusion for Human Action Recognition via Biset/Multiset Globality Locality Preserving Canonical Correlation Analysis
    Elmadany, Nour El Din
    He, Yifeng
    Guan, Ling
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5275 - 5287
  • [7] Discriminative Multiple Canonical Correlation Analysis for Information Fusion
    Gao, Lei
    Qi, Lin
    Chen, Enqing
    Guan, Ling
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1951 - 1965
  • [8] Gönen M, 2011, J MACH LEARN RES, V12, P2211
  • [9] Guo X, 2016, 2016 IEEE INT S MULT
  • [10] RELATIONS AMONG M-SETS OF MEASURES
    HORST, P
    [J]. PSYCHOMETRIKA, 1961, 26 (02) : 129 - 149