Fast Charge Extraction in Perovskite-Based Core-Shell Nanowires

被引:14
作者
Ashley, Michael J. [1 ,4 ]
Kluender, Edward J. [2 ,4 ]
Mirkin, Chad A. [1 ,2 ,3 ,4 ]
机构
[1] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[4] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
core-shell nanowires; perovskite nanowires; copper thiocyanate; anodic aluminum oxide; charge extraction; coaxial lithography; electrodeposition; ORGANOMETAL HALIDE PEROVSKITES; ENHANCED RAMAN-SPECTROSCOPY; NANOSTRUCTURED SOLAR-CELLS; ALUMINUM-OXIDE TEMPLATES; THIN-FILMS; PHOTOVOLTAIC CELLS; NANOROD ARRAYS; VAPOR GROWTH; EFFICIENCY; PERFORMANCE;
D O I
10.1021/acsnano.8b03115
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Realizing nanostructured interfaces with precise architectural control enables one to access properties unattainable using bulk materials. In particular, a nanostructured interface (e.g., a core shell nanowire) between two semiconductors leads to a short charge separation distance, such that photoexcited charge carriers can be more quickly and efficiently collected. While vapor-phase growth methods are used to synthesize uniform core-shell nanowire arrays of semiconductors such as Si and InP, more general strategies are required to produce related structures composed of a broader range of materials. Herein, we employ anodic aluminum oxide templates to synthesize CH3NH3PbI3 perovskite core copper thiocyanate shell nanowire arrays employing a combination of electrodeposition and solution casting methods. Using scanning electron microscopy, powder X-ray diffraction, and time-resolved photoluminescence spectroscopy, we confirm the target structure and show that adopting a core shell nanowire architecture accelerates the rate of charge quenching by nearly 3 orders of magnitude compared to samples with only an axial junction. Subsequently, we fit decay curves to a triexponential function to attribute fast quenching in core-shell nanowires to charge extraction by the copper thiocyanate nanotubes, as opposed to recombination within the perovskite nanowires. Dramatic improvements to charge extraction speed and efficiency result from the substantially reduced charge separation distance and increased interfacial area achieved via the core shell nanowire array architecture.
引用
收藏
页码:7206 / 7212
页数:7
相关论文
共 67 条
[1]   Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% [J].
Arora, Neha ;
Dar, M. Ibrahim ;
Hinderhofer, Alexander ;
Pellet, Norman ;
Schreiber, Frank ;
Zakeeruddin, Shaik Mohammed ;
Graetzel, Michael .
SCIENCE, 2017, 358 (6364) :768-771
[2]   Templated Synthesis of Uniform Perovskite Nanowire Arrays [J].
Ashley, Michael J. ;
O'Brien, Matthew N. ;
Hedderick, Konrad R. ;
Mason, Jarad A. ;
Ross, Michael B. ;
Mirkin, Chad A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (32) :10096-10099
[3]   The promise and challenge of nanostructured solar cells [J].
Beard, Matthew C. ;
Luther, Joseph M. ;
Nozik, Arthur J. .
NATURE NANOTECHNOLOGY, 2014, 9 (12) :951-954
[4]   Long-Range Plasmophore Rulers [J].
Bourret, Gilles R. ;
Ozel, Tuncay ;
Blaber, Martin ;
Shade, Chad M. ;
Schatz, George C. ;
Mirkin, Chad A. .
NANO LETTERS, 2013, 13 (05) :2270-2275
[5]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[6]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[7]   GaAs Core-Shell Nanowires for Photovoltaic Applications [J].
Czaban, Josef A. ;
Thompson, David A. ;
LaPierre, Ray R. .
NANO LETTERS, 2009, 9 (01) :148-154
[8]   Impact of microstructure on local carrier lifetime in perovskite solar cells [J].
deQuilettes, Dane W. ;
Vorpahl, Sarah M. ;
Stranks, Samuel D. ;
Nagaoka, Hirokazu ;
Eperon, Giles E. ;
Ziffer, Mark E. ;
Snaith, Henry J. ;
Ginger, David S. .
SCIENCE, 2015, 348 (6235) :683-686
[9]   Atomically thin two-dimensional organic-inorganic hybrid perovskites [J].
Dou, Letian ;
Wong, Andrew B. ;
Yu, Yi ;
Lai, Minliang ;
Kornienko, Nikolay ;
Eaton, Samuel W. ;
Fu, Anthony ;
Bischak, Connor G. ;
Ma, Jie ;
Ding, Tina ;
Ginsberg, Naomi S. ;
Wang, Lin-Wang ;
Alivisatos, A. Paul ;
Yang, Peidong .
SCIENCE, 2015, 349 (6255) :1518-1521
[10]   Lasing in robust cesium lead halide perovskite nanowires [J].
Eaton, Samuel W. ;
Lai, Minliang ;
Gibson, Natalie A. ;
Wong, Andrew B. ;
Dou, Letian ;
Ma, Jie ;
Wang, Lin-Wang ;
Leone, Stephen R. ;
Yang, Peidong .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (08) :1993-1998