A model-independent tool for evolutionary constrained multi-objective optimization under uncertainty

被引:10
作者
White, Jeremy T. [1 ]
Knowling, Matthew J. [2 ]
Fienen, Michael N. [3 ]
Siade, Adam [4 ,5 ]
Rea, Otis [6 ]
Martinez, Guillermo [7 ]
机构
[1] INTERA Inc, Boulder, CO 80302 USA
[2] Univ Adelaide, Fac Engn Comp & Math Sci, Sch Civil Environm & Min Engn, Adelaide, SA, Australia
[3] US Geol Survey, Upper Midwest Water Sci Ctr, Madison, WI USA
[4] Univ Western Australia, Sch Earth Sci, Crawley, WA, Australia
[5] CSIRO Land & Water, Wembley, WA, Australia
[6] Univ Canterbury, Christchurch, New Zealand
[7] INTERA Inc, Austin, TX USA
关键词
Resource management; Decision support; Optimization under uncertainty; Multi-objective optimization; Non-intrusive; GENETIC ALGORITHM; DESIGN; MANAGEMENT; FRAMEWORK;
D O I
10.1016/j.envsoft.2022.105316
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An open-source tool has been developed to facilitate constrained single-and multi-objective optimization under uncertainty (CMOU) analyses. The tool uses the well-known PEST interface protocols to communicate with the underlying forward simulation, making it non-intrusive. The tool contains a built-in parallel run manager to make use of heterogeneous and distributed computing resources. Several popular and well-known evolutionary algorithms are implemented and can be combined with a range of approaches to represent uncertainty in model-derived constraint/objective values. These attributes serve to address the current barrier to adopt advanced CMOU analyses for a wide range of decision-support problems across the environmental modeling spectrum. We demonstrate the capabilities of the CMOU tool on a well-known analytical benchmark problem that we augmented to include uncertainty, as well as on a synthetic density-dependent coastal groundwater management benchmark problem. Both demonstrations highlight the importance of explicitly accounting for uncertainty to convey risk and reliability in pareto-optimal design.
引用
收藏
页数:12
相关论文
共 71 条
  • [1] Handling constraints using multiobjective optimization concepts
    Aguirre, AH
    Riondal, SB
    Coello, CAC
    Lizárraga, GL
    Montes, EM
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (15) : 1989 - 2017
  • [2] Ahlfeld D. P., 2000, OPTIMAL MANAGEMENT F, V1, DOI [DOI 10.1029/00-O00242, 10.1029/00-o00242]
  • [3] Computationally efficient stochastic optimization using multiple realizations
    Bayer, P.
    Buerger, C. M.
    Finkel, M.
    [J]. ADVANCES IN WATER RESOURCES, 2008, 31 (02) : 399 - 417
  • [4] Brakefield L.K., 2015, US GEOLOGICAL SURVEY, P2015
  • [5] Clarke L., 1994, MPI MESSAGE PASSING, DOI [10.1007/978-3-0348-8534-8_21, DOI 10.1007/978-3-0348-8534-8_21]
  • [6] THE HENRY PROBLEM FOR SALTWATER INTRUSION
    CROUCHER, AE
    OSULLIVAN, MJ
    [J]. WATER RESOURCES RESEARCH, 1995, 31 (07) : 1809 - 1814
  • [7] Multi-Constrained Catchment Scale Optimization of Groundwater Abstraction Using Linear Programming
    Danapour, Mehrdis
    Fienen, Michael N.
    Hojberg, Anker Lajer
    Jensen, Karsten Hogh
    Stisen, Simon
    [J]. GROUNDWATER, 2021, 59 (04) : 503 - 516
  • [8] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [9] Deb K., 1995, COMPLEX SYST, V9
  • [10] Deb K., 2001, Multi -objective statistical optimization model, V16