On negativity of higher Euler characteristics

被引:5
作者
Dutta, SP [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1353/ajm.2004.0043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Positivity of higher Euler characteristics on equicharacteristic and unramified regular local rings follow from the works of Serre, Lichtenbaum, and Hochster. Here we prove that such higher Euler characteristics could be negative on complete intersections even for a pair of intersecting modules, both having finite projective dimension, satisfying Serre-vanishing.
引用
收藏
页码:1341 / 1354
页数:14
相关论文
共 18 条
[1]  
Auslander M., 1989, MEM SOC MATH FRANCE, V1, P5, DOI 10.24033/msmf.339
[2]  
Auslander M., 1969, STABLE MODULE THEORY, V94
[3]  
BERTHELOT P, 1997, ASTERISQUE, V241, P273
[4]   A NOTE ON CHOW GROUPS AND INTERSECTION MULTIPLICITY OF MODULES [J].
DUTTA, SP .
JOURNAL OF ALGEBRA, 1993, 161 (01) :186-198
[5]   MODULES OF FINITE PROJECTIVE DIMENSION WITH NEGATIVE INTERSECTION MULTIPLICITIES [J].
DUTTA, SP ;
HOCHSTER, M ;
MCLAUGHLIN, JE .
INVENTIONES MATHEMATICAE, 1985, 79 (02) :253-291
[6]   GENERALIZED INTERSECTION MULTIPLICITIES OF MODULES .2. [J].
DUTTA, SP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (02) :203-204
[7]   GENERALIZED INTERSECTION MULTIPLICITIES OF MODULES [J].
DUTTA, SP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 276 (02) :657-669
[8]   ON THE CANONICAL ELEMENT CONJECTURE [J].
DUTTA, SP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (02) :803-811
[9]  
GILLET H, 1985, CR ACAD SCI I-MATH, V300, P71
[10]   A COUNTEREXAMPLE TO THE RIGIDITY CONJECTURE FOR RINGS [J].
HEITMANN, RC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (01) :94-97