Artificial Neural Network Parameter Tuning Framework For Heart Disease Classification

被引:0
作者
Abu Yazid, M. Haider [1 ]
Satria, Muhammad Haikal [2 ]
Talib, Shukor [1 ]
Azman, Novi [3 ]
机构
[1] UTM, Fac Comp, Johor Baharu, Malaysia
[2] UTM, Fac Biosci & Med Engn, Johor Baharu, Malaysia
[3] Univ Nas, Fac Sci & Engn, Jakarta, Indonesia
来源
2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018) | 2018年
关键词
artificial neural network; heart disease classification; artificial neural network parameter tuning; statlog heart dataset; cleveland heart dataset; IMMUNE RECOGNITION SYSTEM; DIAGNOSIS; FAILURE; RISK;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Heart Disease are among the leading cause of death worldwide. The application of artificial neural network as decision support tool for heart disease detection. However, artificial neural network required multitude of parameter setting in order to find the optimum parameter setting that produce the best performance. This paper proposed the parameter tuning framework for artificial neural network. Statlog heart disease dataset and Cleveland heart disease dataset is used to evaluate the performance of the proposed framework. The results show that the proposed framework able to produce high classification accuracy where the overall classification accuracy for Cleveland dataset is 90.9% and 90% for Statlog dataset.
引用
收藏
页码:674 / 679
页数:6
相关论文
共 29 条
[21]   Diagnosis of heart disease using artificial immune recognition system and fuzzy weighted pre-processing [J].
Polat, Kemal ;
Gunes, Salih ;
Tosun, Sulayman .
PATTERN RECOGNITION, 2006, 39 (11) :2186-2193
[22]   A new feature selection method on classification of medical datasets: Kernel F-score feature selection [J].
Polat, Kemal ;
Gunes, Salih .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (07) :10367-10373
[23]   An artificial neural network to predict the outcome of repeat prostate biopsies [J].
Remzi, M ;
Anagnostou, T ;
Ravery, V ;
Zlotta, A ;
Stephan, C ;
Marberger, M ;
Djavan, B .
UROLOGY, 2003, 62 (03) :456-460
[24]  
Sagir A.M., 2017, PERTANIKA J SCI TECH, V25
[25]   Hybrid intelligent modeling schemes for heart disease classification [J].
Shao, Yuehjen E. ;
Hou, Chia-Ding ;
Chiu, Chih-Chou .
APPLIED SOFT COMPUTING, 2014, 14 :47-52
[26]   Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes [J].
Tu, JV .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 1996, 49 (11) :1225-1231
[27]   Fuzzy neuro genetic approach for predicting the risk of cardiovascular diseases [J].
Vijaya, Kalavakonda ;
Nehemiah, H. Khanna ;
Kannan, A. ;
Bhuvaneswari, N. G. .
INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2010, 2 (04) :388-402
[28]   Structural least square twin support vector machine for classification [J].
Xu, Yitian ;
Pan, Xianli ;
Zhou, Zhijian ;
Yang, Zhiji ;
Zhang, Yuqun .
APPLIED INTELLIGENCE, 2015, 42 (03) :527-536
[29]   Forecasting with artificial neural networks: The state of the art [J].
Zhang, GQ ;
Patuwo, BE ;
Hu, MY .
INTERNATIONAL JOURNAL OF FORECASTING, 1998, 14 (01) :35-62