Artificial Neural Network Parameter Tuning Framework For Heart Disease Classification

被引:0
作者
Abu Yazid, M. Haider [1 ]
Satria, Muhammad Haikal [2 ]
Talib, Shukor [1 ]
Azman, Novi [3 ]
机构
[1] UTM, Fac Comp, Johor Baharu, Malaysia
[2] UTM, Fac Biosci & Med Engn, Johor Baharu, Malaysia
[3] Univ Nas, Fac Sci & Engn, Jakarta, Indonesia
来源
2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018) | 2018年
关键词
artificial neural network; heart disease classification; artificial neural network parameter tuning; statlog heart dataset; cleveland heart dataset; IMMUNE RECOGNITION SYSTEM; DIAGNOSIS; FAILURE; RISK;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Heart Disease are among the leading cause of death worldwide. The application of artificial neural network as decision support tool for heart disease detection. However, artificial neural network required multitude of parameter setting in order to find the optimum parameter setting that produce the best performance. This paper proposed the parameter tuning framework for artificial neural network. Statlog heart disease dataset and Cleveland heart disease dataset is used to evaluate the performance of the proposed framework. The results show that the proposed framework able to produce high classification accuracy where the overall classification accuracy for Cleveland dataset is 90.9% and 90% for Statlog dataset.
引用
收藏
页码:674 / 679
页数:6
相关论文
共 29 条
[1]  
Amato F., 2013, Artificial neural networks in medical diagnosis, DOI [10.2478/v10136-012-0031-x, DOI 10.2478/V10136-012-0031-X]
[2]  
[Anonymous], 1997, NEURAL NETWORK DESIG
[3]   Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules [J].
Anooj, P. K. .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2012, 24 (01) :27-40
[4]  
Cheung N., 2001, THESIS U QUEENLAND
[5]   Effective diagnosis of heart disease through neural networks ensembles [J].
Das, Resul ;
Turkoglu, Ibrahim ;
Sengur, Abdulkadir .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (04) :7675-7680
[6]  
Demuth H., 1992, NEURAL NETWORK TOOLB
[7]  
Demuth Howard, 1992, NEURAL NETWORK USE M
[8]   INTERNATIONAL APPLICATION OF A NEW PROBABILITY ALGORITHM FOR THE DIAGNOSIS OF CORONARY-ARTERY DISEASE [J].
DETRANO, R ;
JANOSI, A ;
STEINBRUNN, W ;
PFISTERER, M ;
SCHMID, JJ ;
SANDHU, S ;
GUPPY, KH ;
LEE, S ;
FROELICHER, V .
AMERICAN JOURNAL OF CARDIOLOGY, 1989, 64 (05) :304-310
[9]   Feature Analysis of Coronary Artery Heart Disease Data Sets [J].
El-Bialy, Randa ;
Salamay, Mostafa A. ;
Karam, Omar H. ;
Khalifa, M. Essam .
INTERNATIONAL CONFERENCE ON COMMUNICATIONS, MANAGEMENT, AND INFORMATION TECHNOLOGY (ICCMIT'2015), 2015, 65 :459-468
[10]  
Farmakis D, 2015, REV ESP CARDIOL, V68, P245, DOI [10.1016/j.recesp.2014.11.009, 10.1016/j.rec.2014.11.004]