Molecular dynamics modeling of mechanical and tribological properties of additively manufactured AlCoCrFe high entropy alloy coating on aluminum substrate

被引:37
作者
Yang, Xuehui [1 ]
Zhang, Jian [1 ]
Sagar, Sugrim [1 ]
Dube, Tejesh [1 ]
Kim, Bong-Gu [2 ]
Jung, Yeon-Gil [2 ]
Koo, Dan Daehyun [3 ]
Jones, Alan [1 ]
Zhang, Jing [1 ]
机构
[1] Indiana Univ Purdue Univ Indianapolis, Dept Mech & Energy Engn, Indianapolis, IN 46202 USA
[2] Changwon Natl Univ, Dept Mat Convergence & Syst Engn, Chang Won, South Korea
[3] Indiana Univ Purdue Univ Indianapolis, Dept Engn Technol, Indianapolis, IN USA
基金
新加坡国家研究基金会;
关键词
High entropy alloy; Molecular dynamics; Nanoindentation; Scratch test; Mechanical property; Tribological property; BEHAVIOR; MICROSTRUCTURE; PERFORMANCE; CORROSION;
D O I
10.1016/j.matchemphys.2021.124341
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, an improved molecular dynamics (MD) model is developed to simulate the nanoindentation and tribological tests of additively manufactured high entropy alloys (HEA) AlCoCrFe coated on an aluminum substrate. The model shows that in the interface region between the HEA coating and Al substrate, as the laser heating temperature increases during the HEA coating additive manufacturing process, more Al in the substrate is melted to react with other elements in the coating layer, which is qualitatively in agreement with experiment in literature. Using the simulated nanoindentation tests, the calculated Young's modulus of pure Al and Al with HEA coating is 79.93 GPa and 119.30 GPa, respectively. In both our simulations and the experimental results in the literature, the hardness of Al with the HEA coating layer is about 10 times higher than the Al hardness, indicating that HEA can significantly improve the hardness of the metallic substrate. Using the simulated tribological scratch tests, the computed wear tracks are qualitatively in agreement with experimental images in literature. Both our model and experiment show that the Al with HEA coating has a much smaller wear track than that of Al, due to less plastic deformation, confirmed by a dislocation analysis. The computed average coefficient of friction of Al is 0.62 and Al with HEA coating is 0.14. This work demonstrates that the HEA coating significantly improves the mechanical and tribology properties, which are in excellent agreement with the experiments reported in the literature.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement
    Li, Junchen
    Li, Yulong
    Wang, Feifan
    Meng, Xiangchen
    Wan, Long
    Dong, Zhibo
    Huang, Yongxian
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 792 (792):
  • [42] Molecular dynamics simulations of tensile properties for FeNiCrCoCu high-entropy alloy
    Wang, Qian
    Guo, Junhong
    Chen, Weiqiu
    Tian, Yuan
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [43] Microstructure and Mechanical Properties of Wire Arc Additively Manufactured MoNbTaWTi High Entropy Alloys
    Liu, Jian
    Li, Jing
    Du, Xian
    Tong, Yonggang
    Wang, Rui
    He, Dongyu
    Cai, Zhihai
    Wang, Haidou
    MATERIALS, 2021, 14 (16)
  • [44] Microstructure, multi-scale mechanical and tribological performance of HVAF sprayed AlCoCrFeNi high-entropy alloy coating
    Meghwal, Ashok
    Bosi, Ecio
    Anupam, Ameey
    Hall, Colin
    Bjorklund, Stefan
    Joshi, Shrikant
    Munroe, P.
    Berndt, Christopher C.
    Ang, Andrew Siao Ming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [45] Microstructure and Wide Temperature Range Tribological Properties of CoCrFeNiTi High-Entropy Alloy Coating by Laser Cladding
    Liu, Hao
    Xu, Qiansheng
    Wang, Linwei
    Chen, Peijian
    Liu, Xinhua
    Gao, Qiang
    Hao, Jingbin
    Yang, Haifeng
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025, 34 (02) : 1515 - 1525
  • [46] Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting
    Park, Jeong Min
    Choe, Jungho
    Kim, Jung Gi
    Bae, Jae Wung
    Moon, Jongun
    Yang, Sangsun
    Kim, Kyung Tae
    Yu, Ji-Hun
    Kim, Hyoung Seop
    MATERIALS RESEARCH LETTERS, 2020, 8 (01): : 1 - 7
  • [47] Mechanical Properties of High Strength Aluminum Alloy EN AW-7075 Additively Manufactured by Directed Energy Deposition
    Langebeck, Anika
    Bohlen, Annika
    Rentsch, Rudiger
    Vollertsen, Frank
    METALS, 2020, 10 (05)
  • [48] Exploring the mechanical and tribological properties of AlCrFeNiTi high-entropy alloy fabricated by mechanical alloying and spark plasma sintering
    Nagarjuna, Cheenepalli
    Dewangan, Sheetal Kumar
    Lee, Hansung
    Lee, Kwan
    Ahn, Byungmin
    VACUUM, 2023, 218
  • [49] Temperature-dependent dynamic compressive properties and failure mechanisms of the additively manufactured CoCrFeMnNi high entropy alloy
    Chen, Hongyu
    Liu, Yang
    Wang, Yonggang
    Li, Zhiguo
    Wang, Di
    Kosiba, Konrad
    MATERIALS & DESIGN, 2022, 224
  • [50] In situ synchrotron X-ray imaging and mechanical properties characterization of additively manufactured high-entropy alloy composites
    Pegues, Jonathan W.
    Melia, Michael A.
    Rodriguez, Mark A.
    Babuska, Tomas F.
    Gould, Benjamin
    Argibay, Nicolas
    Greco, Aaron
    Kustas, Andrew B.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 876