Molecular dynamics modeling of mechanical and tribological properties of additively manufactured AlCoCrFe high entropy alloy coating on aluminum substrate

被引:36
|
作者
Yang, Xuehui [1 ]
Zhang, Jian [1 ]
Sagar, Sugrim [1 ]
Dube, Tejesh [1 ]
Kim, Bong-Gu [2 ]
Jung, Yeon-Gil [2 ]
Koo, Dan Daehyun [3 ]
Jones, Alan [1 ]
Zhang, Jing [1 ]
机构
[1] Indiana Univ Purdue Univ Indianapolis, Dept Mech & Energy Engn, Indianapolis, IN 46202 USA
[2] Changwon Natl Univ, Dept Mat Convergence & Syst Engn, Chang Won, South Korea
[3] Indiana Univ Purdue Univ Indianapolis, Dept Engn Technol, Indianapolis, IN USA
基金
新加坡国家研究基金会;
关键词
High entropy alloy; Molecular dynamics; Nanoindentation; Scratch test; Mechanical property; Tribological property; BEHAVIOR; MICROSTRUCTURE; PERFORMANCE; CORROSION;
D O I
10.1016/j.matchemphys.2021.124341
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, an improved molecular dynamics (MD) model is developed to simulate the nanoindentation and tribological tests of additively manufactured high entropy alloys (HEA) AlCoCrFe coated on an aluminum substrate. The model shows that in the interface region between the HEA coating and Al substrate, as the laser heating temperature increases during the HEA coating additive manufacturing process, more Al in the substrate is melted to react with other elements in the coating layer, which is qualitatively in agreement with experiment in literature. Using the simulated nanoindentation tests, the calculated Young's modulus of pure Al and Al with HEA coating is 79.93 GPa and 119.30 GPa, respectively. In both our simulations and the experimental results in the literature, the hardness of Al with the HEA coating layer is about 10 times higher than the Al hardness, indicating that HEA can significantly improve the hardness of the metallic substrate. Using the simulated tribological scratch tests, the computed wear tracks are qualitatively in agreement with experimental images in literature. Both our model and experiment show that the Al with HEA coating has a much smaller wear track than that of Al, due to less plastic deformation, confirmed by a dislocation analysis. The computed average coefficient of friction of Al is 0.62 and Al with HEA coating is 0.14. This work demonstrates that the HEA coating significantly improves the mechanical and tribology properties, which are in excellent agreement with the experiments reported in the literature.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Microstructure, mechanical properties, and corrosion performance of additively manufactured CoCrFeMnNi high-entropy alloy before and after heat treatment
    Savinov, Roman
    Shi, Jing
    MATERIALS SCIENCE IN ADDITIVE MANUFACTURING, 2023, 2 (01):
  • [32] Significance of grain refinement on micro-mechanical properties and structures of additively-manufactured CoCrFeNi high-entropy alloy
    Zhao, Wenrui
    Han, Jae-Kyung
    Kuzminova, Yulia O.
    Evlashin, Stanislav A.
    Zhilyaev, Alexander P.
    Pesin, Alexander M.
    Jang, Jae-il
    Liss, Klaus-Dieter
    Kawasaki, Megumi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 807
  • [33] The Influence of AlFeNiCrCoTi High-Entropy Alloy on Microstructure, Mechanical Properties and Tribological Behaviors of Aluminum Matrix Composites
    Li, Qinglin
    Bao, Xuepeng
    Zhao, Shang
    Zhu, Yuqian
    Lan, Yefeng
    Feng, Xianyu
    Zhang, Qiang
    INTERNATIONAL JOURNAL OF METALCASTING, 2021, 15 (01) : 281 - 291
  • [34] The Influence of AlFeNiCrCoTi High-Entropy Alloy on Microstructure, Mechanical Properties and Tribological Behaviors of Aluminum Matrix Composites
    Qinglin Li
    Xuepeng Bao
    Shang Zhao
    Yuqian Zhu
    Yefeng Lan
    Xianyu Feng
    Qiang Zhang
    International Journal of Metalcasting, 2021, 15 : 281 - 291
  • [35] Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy
    Yinghui Zhou
    Xin Lin
    Nan Kang
    Weidong Huang
    Jiang Wang
    Zhennan Wang
    JournalofMaterialsScience&Technology, 2020, 37 (02) : 143 - 153
  • [36] Tensile mechanical properties of CoCrFeNiTiAl high entropy alloy via molecular dynamics simulations
    Sun, Zhi Hui
    Zhang, Jie
    Xin, Gao Xin
    Xie, Lu
    Yang, Li Chun
    Peng, Qing
    INTERMETALLICS, 2022, 142
  • [37] Molecular Dynamics Simulation of AlxCoCrFeNi High Entropy Alloy Coating at High Temperature
    Wu C.
    Sun H.
    Yang C.
    Mocaxue Xuebao/Tribology, 2024, 44 (04): : 530 - 541
  • [38] Improvement of high entropy alloy nitride coatings (AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias
    Lo, Wei-Li
    Hsu, Sheng-Yu
    Lin, Yu-Chia
    Tsai, Su-Yueh
    Lai, Yuan-Tai
    Duh, Jenq-Gong
    SURFACE & COATINGS TECHNOLOGY, 2020, 401
  • [39] Dynamic mechanical properties and σ precipitates strengthening of a NiCrFeCoMo0.2 high-entropy alloy additively manufactured by selective laser melting
    Huang, Yiyu
    Li, Wenshu
    Liu, Ruoyu
    Chen, Haoyu
    Wu, Qi
    Wei, Shaohong
    Liu, Bin
    Liaw, Peter K.
    Wang, Bingfeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [40] Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling
    Hongge Li
    Wenjie Zhao
    Tian Chen
    Yongjiang Huang
    Jianfei Sun
    Ping Zhu
    Yunzhuo Lu
    Alfonso H.W.Ngan
    Daqing Wei
    Qing Du
    Yongchun Zou
    JournalofMaterialsScience&Technology, 2022, 115 (20) : 40 - 51