SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population

被引:57
作者
Boutet, Gilles [1 ,7 ]
Carvalho, Susete Alves [1 ,3 ]
Falque, Matthieu [2 ]
Peterlongo, Pierre [3 ]
Lhuillier, Emeline [4 ]
Bouchez, Olivier [4 ,6 ]
Lavaud, Clement [1 ,7 ]
Pilet-Nayel, Marie-Laure [1 ,7 ]
Riviere, Nathalie [5 ]
Baranger, Alain [1 ,7 ]
机构
[1] INRA, IGEPP, UMR 1349, BP35327, F-35653 Le Rheu, France
[2] Univ Paris 11, INRA, CNRS,Ferme Moulon, UMR Genet Quantitat & Evolut Moulon,AgroParisTech, F-91190 Gif Sur Yvette, France
[3] INRIA Rennes, Bretagne Atlantique IRISA, EPI GenScale, F-35042 Rennes, France
[4] INRA Auzeville, GeT PlaGe, F-31326 Castanet Tolosan, France
[5] Biogemma, CS90126, F-63720 Chappes, France
[6] INRA Auzeville, INRA, ENSAT GenPhySE, UMR1388,ENVT, F-31326 Castanet Tolosan, France
[7] INRA, CETIOM, UMT, PISOM, BP35327, F-35653 Le Rheu, France
来源
BMC GENOMICS | 2016年 / 17卷
关键词
Aphanomyces euteiches; Pisum sativum; Next generation sequencing; Marker assisted selection; QTL; QTL ANALYSIS; LINKAGE MAP; FIELD PEA; IDENTIFICATION; CONSTRUCTION; POLYMORPHISM; DAMAGE; LOCI;
D O I
10.1186/s12864-016-2447-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Progress in genetics and breeding in pea still suffers from the limited availability of molecular resources. SNP markers that can be identified through affordable sequencing processes, without the need for prior genome reduction or a reference genome to assemble sequencing data would allow the discovery and genetic mapping of thousands of molecular markers. Such an approach could significantly speed up genetic studies and marker assisted breeding for non-model species. Results: A total of 419,024 SNPs were discovered using HiSeq whole genome sequencing of four pea lines, followed by direct identification of SNP markers without assembly using the discoSnp tool. Subsequent filtering led to the identification of 131,850 highly designable SNPs, polymorphic between at least two of the four pea lines. A subset of 64,754 SNPs was called and genotyped by short read sequencing on a subpopulation of 48 RILs from the cross 'Baccara' x 'PI180693'. This data was used to construct a WGGBS-derived pea genetic map comprising 64,263 markers. This map is collinear with previous pea consensus maps and therefore with the Medicago truncatula genome. Sequencing of four additional pea lines showed that 33 % to 64 % of the mapped SNPs, depending on the pairs of lines considered, are polymorphic and can therefore be useful in other crosses. The subsequent genotyping of a subset of 1000 SNPs, chosen for their mapping positions using a KASP (TM) assay, showed that almost all generated SNPs are highly designable and that most (95 %) deliver highly qualitative genotyping results. Using rather low sequencing coverages in SNP discovery and in SNP inferring did not hinder the identification of hundreds of thousands of high quality SNPs. Conclusions: The development and optimization of appropriate tools in SNP discovery and genetic mapping have allowed us to make available a massive new genomic resource in pea. It will be useful for both fine mapping within chosen QTL confidence intervals and marker assisted breeding for important traits in pea improvement.
引用
收藏
页数:14
相关论文
共 43 条
[1]  
Alves Carvalho S, 2014, EUR C COMP BIOL, V5
[2]   Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers [J].
Baird, Nathan A. ;
Etter, Paul D. ;
Atwood, Tressa S. ;
Currey, Mark C. ;
Shiver, Anthony L. ;
Lewis, Zachary A. ;
Selker, Eric U. ;
Cresko, William A. ;
Johnson, Eric A. .
PLOS ONE, 2008, 3 (10)
[3]   Intraspecific variation of recombination rate in maize [J].
Bauer, Eva ;
Falque, Matthieu ;
Walter, Hildrun ;
Bauland, Cyril ;
Camisan, Christian ;
Campo, Laura ;
Meyer, Nina ;
Ranc, Nicolas ;
Rincent, Renaud ;
Schipprack, Wolfgang ;
Altmann, Thomas ;
Flament, Pascal ;
Melchinger, Albrecht E. ;
Menz, Monica ;
Moreno-Gonzalez, Jesus ;
Ouzunova, Milena ;
Revilla, Pedro ;
Charcosset, Alain ;
Martin, Olivier C. ;
Schoen, Chris-Carolin .
GENOME BIOLOGY, 2013, 14 (09)
[4]   Translational Genomics in Legumes Allowed Placing In Silico 5460 Unigenes on the Pea Functional Map and Identified Candidate Genes in Pisum sativum L. [J].
Bordat, Amandine ;
Savois, Vincent ;
Nicolas, Marie ;
Salse, Jerome ;
Chauveau, Aurelie ;
Bourgeois, Michael ;
Potier, Jean ;
Houtin, Herve ;
Rond, Celine ;
Murat, Florent ;
Marget, Pascal ;
Aubert, Gregoire ;
Burstin, Judith .
G3-GENES GENOMES GENETICS, 2011, 1 (02) :93-103
[5]  
Brown D, 2000, MAPPOP 1 0 SOFTWARE
[6]  
Burstin J, 2014, 7 INT C LEG GEN GEN
[7]   Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley [J].
Chutimanitsakun, Yada ;
Nipper, Rick W. ;
Cuesta-Marcos, Alfonso ;
Cistue, Luis ;
Corey, Ann ;
Filichkina, Tanya ;
Johnson, Eric A. ;
Hayes, Patrick M. .
BMC GENOMICS, 2011, 12
[8]   Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing [J].
Crossa, Jose ;
Beyene, Yoseph ;
Kassa, Semagn ;
Perez, Paulino ;
Hickey, John M. ;
Chen, Charles ;
de los Campos, Gustavo ;
Burgueno, Juan ;
Windhausen, Vanessa S. ;
Buckler, Ed ;
Jannink, Jean-Luc ;
Lopez Cruz, Marco A. ;
Babu, Raman .
G3-GENES GENOMES GENETICS, 2013, 3 (11) :1903-1926
[9]   CARHTAGene:: multipopulation integrated genetic and radiation hybrid mapping [J].
de Givry, S ;
Bouchez, M ;
Chabrier, P ;
Milan, D ;
Schiex, T .
BIOINFORMATICS, 2005, 21 (08) :1703-1704
[10]   Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly [J].
Deokar, Amit A. ;
Ramsay, Larissa ;
Sharpe, Andrew G. ;
Diapari, Marwan ;
Sindhu, Anoop ;
Bett, Kirstin ;
Warkentin, Thomas D. ;
Tar'an, Bunyamin .
BMC GENOMICS, 2014, 15