Anomaly Detection Using Autoencoders in High Performance Computing Systems

被引:0
|
作者
Borghesi, Andrea [1 ]
Bartolini, Andrea [1 ]
Lombardi, Michele [2 ]
Milano, Michela [2 ]
Benini, Luca [3 ]
机构
[1] Univ Bologna, DEI, Bologna, Italy
[2] Univ Bologna, DISI, Bologna, Italy
[3] ETHZ, Integrated Syst Lab, Zurich, Switzerland
来源
THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2019年
基金
欧盟地平线“2020”;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection in supercomputers is a very difficult problem due to the big scale of the systems and the high number of components. The current state of the art for automated anomaly detection employs Machine Learning methods or statistical regression models in a supervised fashion, meaning that the detection tool is trained to distinguish among a fixed set of behaviour classes (healthy and unhealthy states). We propose a novel approach for anomaly detection in High Performance Computing systems based on a Machine (Deep) Learning technique, namely a type of neural network called autoencoder. The key idea is to train a set of autoencoders to learn the normal (healthy) behaviour of the supercomputer nodes and, after training, use them to identify abnormal conditions. This is different from previous approaches which where based on learning the abnormal condition, for which there are much smaller datasets (since it is very hard to identify them to begin with). We test our approach on a real supercomputer equipped with a fine-grained, scalable monitoring infrastructure that can provide large amount of data to characterize the system behaviour. The results are extremely promising: after the training phase to learn the normal system behaviour, our method is capable of detecting anomalies that have never been seen before with a very good accuracy (values ranging between 88% and 96%).
引用
收藏
页码:9428 / 9433
页数:6
相关论文
共 50 条
  • [1] Anomaly Detection and Anticipation in High Performance Computing Systems
    Borghesi, Andrea
    Molan, Martin
    Milano, Michela
    Bartolini, Andrea
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (04) : 739 - 750
  • [2] Anomaly Detection On Propulsive Systems By Global Approach Using Autoencoders
    Ferard, Bruno
    Le Gonidec, Serge
    Galeotta, Marco
    Oriol, Stephane
    Dreyer, Stephanie
    IFAC PAPERSONLINE, 2021, 54 (04): : 31 - 37
  • [3] Anomaly Detection in Industrial Software Systems Using Variational Autoencoders
    Kumarage, Tharindu
    De Silva, Nadun
    Ranawaka, Malsha
    Kuruppu, Chamal
    Ranathunga, Surangika
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM 2018), 2018, : 440 - 447
  • [4] Feature Extraction and Anomaly Detection Using Different Autoencoders for Modeling Intrusion Detection Systems
    Sivasubramanian, Arrun
    Devisetty, Mithil
    Bhavukam, Premjith
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (09) : 13061 - 13073
  • [5] Anomaly Detection Using Autoencoders for Movement Prediction
    Barbosa, L. J. L.
    Delis, A. L.
    Cotta, P. V. P.
    Silva, V. O.
    Araujo, M. D. C.
    Rocha, A.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 1635 - 1640
  • [6] Anomaly Detection of a Reciprocating Compressor using Autoencoders
    Charoenchitt, Chittkasem
    Tangamchit, Poj
    2021 SECOND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION, CONTROL, ARTIFICIAL INTELLIGENCE, AND ROBOTICS (ICA-SYMP), 2021, : 44 - 47
  • [7] A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems
    Borghesi, Andrea
    Bartolini, Andrea
    Lombardi, Michele
    Milano, Michela
    Benini, Luca
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 634 - 644
  • [8] uPAD: Unsupervised Privacy-Aware Anomaly Detection in High Performance Computing Systems
    Ghiasvand, Siavash
    ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 852 - 859
  • [9] Anomaly Detection for HTTP Using Convolutional Autoencoders
    Park, Seungyoung
    Kim, Myungjin
    Lee, Seokwoo
    IEEE ACCESS, 2018, 6 : 70884 - 70901
  • [10] Anomaly Detection for Agricultural Vehicles Using Autoencoders
    Mujkic, Esma
    Philipsen, Mark P.
    Moeslund, Thomas B.
    Christiansen, Martin P.
    Ravn, Ole
    SENSORS, 2022, 22 (10)