Long-periodic orbits and invariant tori in a singularly perturbed Hamiltonian system

被引:15
作者
Gelfreich, V [1 ]
Lerman, L
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
[2] Nizhnii Novgorod State Univ, Inst Appl Math & Cybernet, Dept Math, Nizhnii Novgorod 603005, Russia
基金
俄罗斯基础研究基金会;
关键词
singular perturbation; slow manifold; KAM tori;
D O I
10.1016/S0167-2789(02)00745-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a singularly perturbed, two-degree-of-freedom Hamiltonian system with a normally elliptic slow manifold. We prove that the slow manifold persists but can have a large number (similar toepsilon(-1)) of exponentially small (less than or equal toe(-c/epsilon)) gaps. We demonstrate the existence of KAM tori in a neighborhood of the slow manifold. In addition, we investigate a bifurcation which describes the creation of a gap in the slow manifold and derive its normal form. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 146
页数:22
相关论文
共 16 条
[1]   Dynamical systems in the theory of solitons in the presence of nonlocal interactions [J].
Alfimov, G. L. ;
Eleonsky, V. M. ;
Kulagin, N. E. .
CHAOS, 1992, 2 (04) :566-570
[2]  
AMICK CJ, 1989, ARCH RATION MECH AN, V105, P1
[3]  
Arnol'd V. I., 1963, Uspehi Mat. Nauk, V18, P85, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[4]  
Arnold V. I., ENCY MATH SCI, V4
[5]  
ARNOLD VI, ENCY MATH SCI, V3
[6]  
Bokhove O, 1996, J ATMOS SCI, V53, P276, DOI 10.1175/1520-0469(1996)053<0276:OHBDAT>2.0.CO
[7]  
2
[8]  
BRUENING J, 2001, MATERN ZAMETKI, V70, P660
[9]   Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system [J].
Delshams, A ;
Gutierrez, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (02) :277-303
[10]   Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system [J].
Gelfreich, V ;
Lerman, L .
NONLINEARITY, 2002, 15 (02) :447-457