Multi-agent reinforcement learning for intelligent resource allocation in IIoT networks

被引:4
|
作者
Rosenberger, Julia [1 ]
Urlaub, Michael [1 ]
Schramm, Dieter [2 ]
机构
[1] Bosch Rexroth AG, Automat & Electrificat Solut, Lohr, Germany
[2] Univ Duisburg Essen, Chair Mechatron, Duisburg, Germany
来源
2021 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT) | 2021年
关键词
multi-agent-system; deep reinforcement learning; resource allocation; load balancing; industrial internet of things; streaming data; INTERNET;
D O I
10.1109/GCAIoT53516.2021.9692913
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the industrial Internet of Things (IIoT), a high number of devices with limited resources, like computational power, memory, bandwidth and, in case of wireless sensor networks, also energy, communicate. At the same time, the amount of data as well as the demand for data processing in the edge is rapidly increasing. To enable Industry 4.0 (I4.0) and the IIoT, an intelligent resource allocation is required to make optimal use of the available resources. For this purpose, a multi-agent system (MAS) based on deep reinforcement learning (DRL) is proposed. Multi-agent reinforcement learning (MARL) is already taken into account in different communication networks, e.g. for intelligent routing. Despite its great potential, little attention is paid to these methods in industry so far. In this work, DRL is applied for resource allocation and load balancing for industrial edge computing. An optimal usage of the available resources of the IIoT devices should be achieved. Due to the structure of IIoT systems as well as for security reasons, a MAS is preferred for decentralized decision making. In subsequent steps, it is planned to add and remove devices during runtime, to change the number of tasks to be executed as well as evaluations on single- and multipolicy-approaches. The following aspects will be considered for evaluation: (1) improvement of the resource usage of the devices and (2) overhead due to the MAS.
引用
收藏
页码:118 / 119
页数:2
相关论文
共 50 条
  • [1] Deep Reinforcement Learning Multi-Agent System for Resource Allocation in Industrial Internet of Things
    Rosenberger, Julia
    Urlaub, Michael
    Rauterberg, Felix
    Lutz, Tina
    Selig, Andreas
    Buehren, Michael
    Schramm, Dieter
    SENSORS, 2022, 22 (11)
  • [2] Multi-Agent Reinforcement Learning for Slicing Resource Allocation in Vehicular Networks
    Cui, Yaping
    Shi, Hongji
    Wang, Ruyan
    He, Peng
    Wu, Dapeng
    Huang, Xinyun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 2005 - 2016
  • [3] Dynamic power allocation in IIoT based on multi-agent deep reinforcement learning
    Li, Fenglei
    Liu, Zhixin
    Zhang, Xinzhe
    Yang, Yi
    NEUROCOMPUTING, 2022, 505 : 10 - 18
  • [4] DISTRIBUTED RESOURCE ALLOCATION IN 5G NETWORKS WITH MULTI-AGENT REINFORCEMENT LEARNING
    Menard, Jon
    Al-Habashna, Ala'a
    Wainer, Gabriel
    Boudreau, Gary
    PROCEEDINGS OF THE 2022 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'22), 2022, : 802 - 813
  • [5] Intelligent multi-agent reinforcement learning model for resources allocation in cloud computing
    Belgacem, Ali
    Mahmoudi, Said
    Kihl, Maria
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) : 2391 - 2404
  • [6] Multi-Agent Deep Reinforcement Learning-Based Resource Allocation for Cognitive Radio Networks
    Mei, Ruru
    Wang, Zhugang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 4744 - 4757
  • [7] Resource allocation strategy for vehicular communication networks based on multi-agent deep reinforcement learning
    Liu, Zhibin
    Deng, Yifei
    VEHICULAR COMMUNICATIONS, 2025, 53
  • [8] Resource Allocation for Dynamic Platoon Digital Twin Networks: A Multi-Agent Deep Reinforcement Learning Method
    Wang, Lei
    Liang, Hongbin
    Mao, Guotao
    Zhao, Dongmei
    Liu, Qian
    Yao, Yiting
    Zhang, Han
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (10) : 15609 - 15620
  • [9] Federated Multi-Agent Deep Reinforcement Learning for Resource Allocation of Vehicle-to-Vehicle Communications
    Li, Xiang
    Lu, Lingyun
    Ni, Wei
    Jamalipour, Abbas
    Zhang, Dalin
    Du, Haifeng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8810 - 8824
  • [10] Blockchain-based Dependable Task Offloading and Resource Allocation for IIoT via Multi-Agent Deep Reinforcement Learning
    Zhang, Peifeng
    Xu, Chi
    Xia, Changqing
    Jin, Xi
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,