Among the numerous strategies to design an oxygen carrier, we outline in this work the engineering of a stable homotetrameric hemoglobin, expressed in Escherichia coli. The chimeric globin (Psi) consists of the first 79 residues of human beta P globin (corresponding to positions NA1 --> EF3) followed by the final 67 residues of human alpha globin (corresponding to positions EF3 --> HC3). The molecular mass for beta-EF3-alpha (Psi) globin was measured using mass spectrometry to be equal to its theoretical value: 15782 Da. Correct protein folding was assessed by UV/visible and fluorescence spectra. The subunit interaction free energies were estimated by HPLC gelfiltration. In the cyanometHb species, the formation of the dimer-tetramer interface is 2 kcal/mol less favorable (Delta G = -7 kcal/mol) than that of Hb A (Delta G = -9 kcal/mol), whereas the dimer-monomer interface is tightly assembled (< -10 kcal/mol) as for the Hb A alpha(1) beta(1) interface. In contrast to Hb A, oxygen binding to Psi Hb is not cooperative. The free energy for binding four oxygen molecules to a Psi homotetramer is slightly increased compared to a Hb a heterotetramer (-28 and -27.5 kcal/4 mol of O-2, respectively). The intrinsic O-2 affinity of a Psi homodimer is 6-fold higher than that of a homotetramer. The linkage scheme between dimer-tetramer subunit assembly and the noncooperative oxygenation of Psi Hb predicts a stabilization of the tetramer after ligand release. This protein mechanism resembles that of Hb A for which the dimers exhibit a 100-fold higher O-2 affinity relative to deoxy tetramers (which are 10(5) times more stable than oxy tetramers). A potent allosteric effector of Hb A, RSR4, binds to Psi Hb tetramers, inducing a decrease of the overall O-2 affinity, Since RSR4 interacts specifically with two binding sites of deoxy Hb A, we propose that the chimeric tetramer folding is close to this native structure.