The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials

被引:259
作者
Chen, Hui [1 ,2 ]
Dong, Fangyuan [1 ,2 ]
Minteer, Shelley D. [1 ,2 ]
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
DIRECT ELECTRON-TRANSFER; AMINO-ACID OXIDASE; MICROBIAL ELECTROSYNTHESIS; SHEWANELLA-ONEIDENSIS; ENZYMATIC ELECTROSYNTHESIS; DIRECT ELECTROCHEMISTRY; TRANSFER MECHANISMS; CARBON ELECTRODE; ELECTROENZYMATIC SYNTHESIS; ACTIVATED CARBON;
D O I
10.1038/s41929-019-0408-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bioelectrocatalysis is a green, sustainable, efficient method to produce value-added chemicals, clean biofuels and degradable materials. As an alternative approach to modern biomanufacturing technology, bioelectrocatalysis fully combines the merits of both biocatalysis and electrocatalysis to realize the green, efficient production of target products from electricity. Here, we review the development status of bioelectrocatalysis, discussing the current challenges and looking toward future development directions. First, we detail the structure, function and modification methods of bioelectrocatalysis. Next, we describe the mechanism of electron transfer, including mediated electron transfer and directed electron transfer. Third, we discuss the impact of the electrode on bioelectrocatalysis. Then we analyse and summarize the application of bioelectrocatalysis methods in the production of chemicals, biofuels and materials. Finally, we detail future developments and perspectives on bioelectrocatalysis for electrosynthesis.
引用
收藏
页码:225 / 244
页数:20
相关论文
共 218 条
[1]   Sustainable Bioelectrosynthesis of the Bioplastic Polyhydroxybutyrate: Overcoming Substrate Requirement for NADH Regeneration [J].
Alkotaini, Bassam ;
Abdellaoui, Sofiene ;
Hasan, Kamrul ;
Grattieri, Matteo ;
Quah, Timothy ;
Cai, Rong ;
Yuan, Mengwei ;
Minteer, Shelley D. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (04) :4909-4915
[2]   Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae [J].
Ambrosio, Rafael ;
Federico Ortiz-Marquez, Juan Cesar ;
Curatti, Leonardo .
METABOLIC ENGINEERING, 2017, 40 :59-68
[3]   Developing ethanol bioanodes using a hydrophobically modified linear polyethylenimine hydrogel for immobilizing an enzyme cascade [J].
Aquino Neto, Sidney ;
Minteer, Shelley D. ;
de Andrade, Adalgisa R. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 812 :153-158
[4]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[5]   Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels [J].
Badura, Adrian ;
Guschin, Dmitrii ;
Esper, Berndt ;
Kothe, Tim ;
Neugebauer, Sebastian ;
Schuhmann, Wolfgang ;
Roegner, Matthias .
ELECTROANALYSIS, 2008, 20 (10) :1043-1047
[6]  
Bailey JE, 1996, BIOTECHNOL BIOENG, V52, P109, DOI 10.1002/(SICI)1097-0290(19961005)52:1<109::AID-BIT11>3.3.CO
[7]  
2-1
[8]   Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis [J].
Bajracharya, Suman ;
Yuliasni, Rustiana ;
Vanbroekhoven, Karolien ;
Buisman, Cees J. N. ;
Strik, David P. B. T. B. ;
Pant, Deepak .
BIOELECTROCHEMISTRY, 2017, 113 :26-34
[9]   An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond [J].
Bajracharya, Suman ;
Sharma, Mohita ;
Mohanakrishna, Gunda ;
Benneton, Xochitl Dominguez ;
Strik, David P. B. T. B. ;
Sarma, Priyangshu M. ;
Pant, Deepak .
RENEWABLE ENERGY, 2016, 98 :153-170
[10]   Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review [J].
Barsan, Madalina M. ;
Ghica, M. Emilia ;
Brett, Christopher M. A. .
ANALYTICA CHIMICA ACTA, 2015, 881 :1-23