ERROR ESTIMATE FOR TIME-EXPLICIT FINITE VOLUME APPROXIMATION OF STRONG SOLUTIONS TO SYSTEMS OF CONSERVATION LAWS

被引:6
作者
Cances, Clement [1 ]
Mathis, Helene [2 ]
Seguin, Nicolas [2 ]
机构
[1] Inria Lille Nord Europe, Team RAPSODI, F-59650 Villeneuve Dascq, France
[2] Univ Nantes, Lab Math Jean Leray, F-44322 Nantes 03, France
关键词
hyperbolic systems; finite volume scheme; relative entropy; error estimate; NONLINEAR HYPERBOLIC EQUATION; RELATIVE ENTROPY; KINETIC-EQUATIONS; GLOBAL EXISTENCE; GAS-DYNAMICS; A-PRIORI; SCHEMES; CONVERGENCE; LIMITS;
D O I
10.1137/15M1029886
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the finite volume approximation of strong solutions to nonlinear systems of conservation laws. We focus on time-explicit schemes on unstructured meshes, with entropy satisfying numerical fluxes. The numerical entropy dissipation is quantified at each interface of the mesh, which enables us to prove a weak-BV estimate for the numerical approximation under a strengthened CFL condition. Then we derive error estimates in the multidimensional case, using the relative entropy between the strong solution and its finite volume approximation. The error terms are carefully studied, leading to a classical O(h(1/4)) estimate in L-2 under this strengthened CFL condition.
引用
收藏
页码:1263 / 1287
页数:25
相关论文
共 51 条
[11]   CONVERGENCE OF AN UPSTREAM FINITE-VOLUME SCHEME FOR A NONLINEAR HYPERBOLIC EQUATION ON A TRIANGULAR MESH [J].
CHAMPIER, S ;
GALLOUET, T ;
HERBIN, R .
NUMERISCHE MATHEMATIK, 1993, 66 (02) :139-157
[12]  
COCKBURN B, 1994, MATH COMPUT, V63, P77, DOI 10.1090/S0025-5718-1994-1240657-4
[13]   Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics [J].
Coquel, F ;
Perthame, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2223-2249
[14]   RELAXATION OF FLUID SYSTEMS [J].
Coquel, Frederic ;
Godlewski, Edwige ;
Seguin, Nicolas .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (08)
[15]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353
[16]  
Dafermos CM, 2010, GRUNDLEHR MATH WISS, V325, P325, DOI 10.1007/978-3-642-04048-1_10
[17]   The Euler equations as a differential inclusion [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1417-1436
[18]   On Admissibility Criteria for Weak Solutions of the Euler Equations [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :225-260
[19]   Probabilistic Analysis of the Upwind Scheme for Transport Equations [J].
Delarue, Francois ;
Lagoutiere, Frederic .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (01) :229-268
[20]   An explicit a priori estimate for a finite volume approximation of linear advection on non-Cartesian grids [J].
Després, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :484-504