ERROR ESTIMATE FOR TIME-EXPLICIT FINITE VOLUME APPROXIMATION OF STRONG SOLUTIONS TO SYSTEMS OF CONSERVATION LAWS

被引:6
作者
Cances, Clement [1 ]
Mathis, Helene [2 ]
Seguin, Nicolas [2 ]
机构
[1] Inria Lille Nord Europe, Team RAPSODI, F-59650 Villeneuve Dascq, France
[2] Univ Nantes, Lab Math Jean Leray, F-44322 Nantes 03, France
关键词
hyperbolic systems; finite volume scheme; relative entropy; error estimate; NONLINEAR HYPERBOLIC EQUATION; RELATIVE ENTROPY; KINETIC-EQUATIONS; GLOBAL EXISTENCE; GAS-DYNAMICS; A-PRIORI; SCHEMES; CONVERGENCE; LIMITS;
D O I
10.1137/15M1029886
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the finite volume approximation of strong solutions to nonlinear systems of conservation laws. We focus on time-explicit schemes on unstructured meshes, with entropy satisfying numerical fluxes. The numerical entropy dissipation is quantified at each interface of the mesh, which enables us to prove a weak-BV estimate for the numerical approximation under a strengthened CFL condition. Then we derive error estimates in the multidimensional case, using the relative entropy between the strong solution and its finite volume approximation. The error terms are carefully studied, leading to a classical O(h(1/4)) estimate in L-2 under this strengthened CFL condition.
引用
收藏
页码:1263 / 1287
页数:25
相关论文
共 51 条
[1]  
[Anonymous], 1976, COMMUN PUR APPL MATH
[2]   FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (05) :667-753
[3]   From kinetic equations to multidimensional isentropic gas dynamics before shocks [J].
Berthelin, F ;
Vasseur, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) :1807-1835
[4]   From Discrete Velocity Boltzmann Equations to Gas Dynamics Before Shocks [J].
Berthelin, Florent ;
Tzavaras, Athanasios E. ;
Vasseur, Alexis .
JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (01) :153-173
[5]   An optimal error estimate for upwind Finite Volume methods for nonlinear hyperbolic conservation laws [J].
Bouche, Daniel ;
Ghidaglia, Jean-Michel ;
Pascal, Frederic P. .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (11) :1114-1131
[6]   Kruzkov's estimates for scalar conservation laws revisited [J].
Bouchut, F ;
Perthame, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) :2847-2870
[7]  
Bouchut F., 2004, FRONT MATH
[8]  
Chainais-Hillairet C, 2000, MATH METHOD APPL SCI, V23, P467
[9]  
Chainais-Hillairet C, 2001, NUMER MATH, V88, P607, DOI 10.1007/s002110000217
[10]  
Chainais-Hillairet C, 1999, RAIRO-MATH MODEL NUM, V33, P129