THE FIRST PASSAGE TIME DENSITY OF BROWNIAN MOTION AND THE HEAT EQUATION WITH DIRICHLET BOUNDARY CONDITION IN TIME DEPENDENT DOMAINS

被引:0
作者
Lee, J. M.
机构
关键词
first passage time; Brownian motion; heat equation; Dirichlet boundary condition;
D O I
10.1137/S0040585X97T990307
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837-849] it is proved that we can have a continuous first-passage-time density function of one-dimensional standard Brownian motion when the boundary is Holder continuous with exponent greater than 1/2. For the purpose of extending the results of [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837-849] to multidimensional domains, we show that there exists a continuous first-passage-time density function of standard d-dimensional Brownian motion in moving boundaries in R-d, d >= 2, under a C-3-diffeomorphism. Similarly as in [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837-849], by using a property of local time of standard d-dimensional Brownian motion and the heat equation with Dirichlet boundary condition, we find a sufficient condition for the existence of the continuous density function.
引用
收藏
页码:142 / 159
页数:18
相关论文
共 8 条
[1]  
Burdzy K, 2004, ANN PROBAB, V32, P775
[2]  
Cannon J. R, 1984, ENCY MATH APPL, V23, DOI DOI 10.1017/CBO9781139086967
[3]  
Friedman A., 2008, Partial Differential Equations of Parabolic Type
[4]   FIRST-PASSAGE TIMES OF TWO-DIMENSIONAL BROWNIAN MOTION [J].
Kou, Steven ;
Zhong, Haowen .
ADVANCES IN APPLIED PROBABILITY, 2016, 48 (04) :1045-1060
[5]  
Lang S., 1999, FUNDAMENTALS DIFFERE, DOI DOI 10.1007/978-1-4612-0541-8
[6]   First Passage Time Densities through Holder curves [J].
Lee, Jimyeong .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02) :837-849
[7]  
LEWIS JL, 1995, MEM AM MATH SOC, V114, pR3
[8]  
Taylor ME, 2011, APPL MATH SCI, V115, P1, DOI 10.1007/978-1-4419-7055-8