An explicit numerical scheme for the computer simulation of the stochastic transport equation

被引:0
作者
de la Cruz, H. [1 ]
Olivera, C. [2 ]
机构
[1] FGV, Sch Appl Math, Praia Botafogo 190, Rio De Janeiro, Brazil
[2] Univ Estadual Campinas, UNICAMP, IMECC, Sao Paulo, Brazil
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2022年 / 110卷
基金
巴西圣保罗研究基金会;
关键词
Computational methods; Random differential equations; Stochastic transport equation; Local linearization approach; Numerical simulation of stochastic systems; LOCAL LINEARIZATION METHOD; DIFFERENTIAL-EQUATIONS; CONVERGENCE;
D O I
10.1016/j.cnsns.2022.106378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A computational method for the numerical integration of the stochastic transport equation is proposed. We develop an approach to construct an explicit numerical scheme for the effective simulation of trajectories of solutions of this equation. Results on its convergence and details on its efficient computational implementation are presented. The performance of the proposed scheme is illustrated by means of computer simulations. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Numerical analysis of a Neumann boundary control problem with a stochastic parabolic equation [J].
Qin Zhou ;
Binjie Li .
Science China Mathematics, 2023, 66 :2133-2156
[42]   Numerical conservation issues for the stochastic Korteweg-de Vries equation [J].
D'Ambrosio, Raffaele ;
Di Giovacchino, Stefano .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424
[43]   Stochastic heat equation: Numerical positivity and almost surely exponential stability [J].
Yang, Xiaochen ;
Yang, Zhanwen ;
Zhang, Chiping .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 119 :312-318
[44]   ANALYSIS OF A SPLITTING SCHEME FOR DAMPED STOCHASTIC NONLINEAR SCHRODINGER EQUATION WITH MULTIPLICATIVE NOISE [J].
Cui, Jianbo ;
Hong, Jialin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) :2045-2069
[45]   STOCHASTIC METHODS FOR THE NEUTRON TRANSPORT EQUATION I: LINEAR SEMIGROUP ASYMPTOTICS [J].
Horton, Emma ;
Kyprianou, Andreas E. ;
Villemonais, Denis .
ANNALS OF APPLIED PROBABILITY, 2020, 30 (06) :2573-2612
[46]   An Explicit Time Marching Scheme for Efficient Solution of the Magnetic Field Integral Equation at Low Frequencies [J].
Chen, Rui ;
Sayed, Sadeed B. ;
Ulku, H. Arda ;
Bagci, Hakan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (02) :1213-1218
[47]   A novel conservative numerical approximation scheme for the Rosenau-Kawahara equation [J].
Pan, Xintian ;
Zhang, Luming .
DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
[48]   An efficient numerical scheme for a 3D spherical dynamo equation [J].
Cheng, Ting ;
Ma, Lina ;
Shen, Jie .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 370
[49]   A numerical scheme for diffusion-convection equation with piecewise constant arguments [J].
Esmailzadeh, Mojgan ;
Najafi, Hashem Saberi ;
Aminikhah, Hossein .
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (03) :573-584
[50]   A conservative numerical scheme for a class of nonlinear Schrodinger equation with wave operator [J].
Zhang, LM ;
Chang, QS .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) :603-612