An explicit numerical scheme for the computer simulation of the stochastic transport equation

被引:0
作者
de la Cruz, H. [1 ]
Olivera, C. [2 ]
机构
[1] FGV, Sch Appl Math, Praia Botafogo 190, Rio De Janeiro, Brazil
[2] Univ Estadual Campinas, UNICAMP, IMECC, Sao Paulo, Brazil
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2022年 / 110卷
基金
巴西圣保罗研究基金会;
关键词
Computational methods; Random differential equations; Stochastic transport equation; Local linearization approach; Numerical simulation of stochastic systems; LOCAL LINEARIZATION METHOD; DIFFERENTIAL-EQUATIONS; CONVERGENCE;
D O I
10.1016/j.cnsns.2022.106378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A computational method for the numerical integration of the stochastic transport equation is proposed. We develop an approach to construct an explicit numerical scheme for the effective simulation of trajectories of solutions of this equation. Results on its convergence and details on its efficient computational implementation are presented. The performance of the proposed scheme is illustrated by means of computer simulations. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Numerical Studies of Three-dimensional Stochastic Darcy's Equation and Stochastic Advection-Diffusion-Dispersion Equation [J].
Lin, G. ;
Tartakovsky, A. M. .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 43 (01) :92-117
[32]   NUMERICAL SOLUTION FOR STOCHASTIC HEAT EQUATION WITH NEUMANN BOUNDARY CONDITIONS [J].
Balachandar, S. Raja ;
Uma, D. ;
Jafari, H. ;
Venkatesh, S. G. .
THERMAL SCIENCE, 2023, 27 (Special Issue 1) :S57-S66
[33]   Application of the Explicit Euler Method for Numerical Analysis of a Nonlinear Fractional Oscillation Equation [J].
Kim, Valentine Aleksandrovich ;
Parovik, Roman Ivanovich .
FRACTAL AND FRACTIONAL, 2022, 6 (05)
[34]   A new numerical scheme for the nonlinear Schrodinger equation with wave operator [J].
Li, Xin ;
Zhang, Luming ;
Zhang, Ting .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) :109-125
[35]   An explicit marching-on-in-time scheme for solving the time domain Kirchhoff integral equation [J].
Chen, Rui ;
Bin Sayed, Sadeed ;
Alharthi, Noha ;
Keyes, David ;
Bagci, Hakan .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 146 (03) :2068-2079
[36]   Numerical Simulation for a Differential Difference Equation With an Interior Layer [J].
Amala, P. ;
Lalu, M. ;
Phaneendra, K. .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (01) :189-202
[37]   Numerical solution of nonlinear stochastic integral equation by stochastic operational matrix based on Bernstein polynomials [J].
Asgari, Mahnaz ;
Hashemizadeh, Elham ;
Khodabin, Morteza ;
Maleknejad, Khosrow .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (01) :3-12
[38]   Stochastic perturbation of sweeping process and a convergence result for an associated numerical scheme [J].
Bernicot, Frederic ;
Venel, Juliette .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) :1195-1224
[39]   Numerical analysis of a Neumann boundary control problem with a stochastic parabolic equation [J].
Zhou, Qin ;
Li, Binjie .
SCIENCE CHINA-MATHEMATICS, 2023, 66 (09) :2133-2156
[40]   A Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation [J].
Momenzade, N. ;
Vahidi, A. R. ;
Babolian, E. .
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2023, 18 (01) :145-164