An explicit numerical scheme for the computer simulation of the stochastic transport equation

被引:0
作者
de la Cruz, H. [1 ]
Olivera, C. [2 ]
机构
[1] FGV, Sch Appl Math, Praia Botafogo 190, Rio De Janeiro, Brazil
[2] Univ Estadual Campinas, UNICAMP, IMECC, Sao Paulo, Brazil
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2022年 / 110卷
基金
巴西圣保罗研究基金会;
关键词
Computational methods; Random differential equations; Stochastic transport equation; Local linearization approach; Numerical simulation of stochastic systems; LOCAL LINEARIZATION METHOD; DIFFERENTIAL-EQUATIONS; CONVERGENCE;
D O I
10.1016/j.cnsns.2022.106378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A computational method for the numerical integration of the stochastic transport equation is proposed. We develop an approach to construct an explicit numerical scheme for the effective simulation of trajectories of solutions of this equation. Results on its convergence and details on its efficient computational implementation are presented. The performance of the proposed scheme is illustrated by means of computer simulations. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
[21]   A numerical scheme for stochastic differential equations with distributional drift [J].
De Angelis, Tiziano ;
Germain, Maximilien ;
Issoglio, Elena .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 154 :55-90
[22]   Convergency and Stability of Explicit and Implicit Schemes in the Simulation of the Heat Equation [J].
Suarez-Carreno, Franyelit ;
Rosales-Romero, Luis .
APPLIED SCIENCES-BASEL, 2021, 11 (10)
[23]   Domain preserving and strongly converging explicit scheme for the stochastic SIS epidemic model [J].
Kiouvrekis, Yiannis ;
Stamatiou, Ioannis S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 456
[24]   First order strong convergence of an explicit scheme for the stochastic SIS epidemic model [J].
Chen, Lin ;
Gan, Siqing ;
Wang, Xiaojie .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392 (392)
[25]   Well-posedness of the transport equation by stochastic perturbation [J].
Flandoli, F. ;
Gubinelli, M. ;
Priola, E. .
INVENTIONES MATHEMATICAE, 2010, 180 (01) :1-53
[26]   Stochastic transport equation with bounded and Dini continuous drift [J].
Wei, Jinlong ;
Lv, Guangying ;
Wang, Wei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 323 :359-403
[27]   An Explicit Pseudo──Spectral Scheme with Almost Unconditional Stability for Cahn──Hiliard Equation [J].
Bainian LU Ruifeng ZHANG Boling GUO Dept of Math Shaanxi Normal Univ Xian China Dept of Math Kaifeng Normal College Kaifeng China Laboratory of Computational Physics Center for Nonlinear Studi .
非线性科学与数值模拟通讯, 1997, (02) :48-54
[28]   A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation [J].
Wang, Tingchun ;
Guo, Boling .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (04) :878-888
[29]   Strong convergence and extinction of positivity preserving explicit scheme for the stochastic SIS epidemic model [J].
Yang, Hongfu ;
Huang, Jianhua .
NUMERICAL ALGORITHMS, 2024, 95 (04) :1475-1502
[30]   MHDSTS: a new explicit numerical scheme for simulations of partially ionised solar plasma [J].
Gonzalez-Morales, P. A. ;
Khomenko, E. ;
Downes, T. P. ;
de Vicente, A. .
ASTRONOMY & ASTROPHYSICS, 2018, 615