Curving flat space-time by deformation quantization?

被引:3
作者
Much, Albert [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Morelia 58190, Michoacan, Mexico
关键词
NUCLEARITY; PROPERTY; FIELD;
D O I
10.1063/1.4995820
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a deformed differential structure to obtain a curved metric by a deformation quantization of the flat space-time. In particular, by setting the deformation parameters to be equal to physical constants, we obtain the Friedmann-Robertson-Walker (FRW) model for inflation and a deformed version of the FRWspace-time. By calculating classical Einstein-equations for the extended space-time, we obtain non-trivial solutions. Moreover, in this framework, we obtain theMoyal-Weyl, i.e., a constant noncommutative space-time, as a consistency condition. Published by AIP Publishing.
引用
收藏
页数:18
相关论文
共 39 条
[31]  
Rovelli C., 1998, QUANT GRAV GR15 C PO
[32]  
Sanders K., 2016, ARXIV160500895MATHPH
[33]   Ultrastatic space-times [J].
Sonego, Sebastiano .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
[34]   The Reeh-Schlieder property for quantum fields on stationary spacetimes [J].
Strohmaier, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) :105-118
[35]   Quantum field theory on noncommutative spaces [J].
Szabo, RJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 378 (04) :207-299
[36]  
Teschl G., 2014, GRADUATE STUDIES MAT
[37]   NUCLEARITY, SPLIT PROPERTY, AND DUALITY FOR THE KLEIN-GORDON FIELD IN CURVED SPACETIME [J].
VERCH, R .
LETTERS IN MATHEMATICAL PHYSICS, 1993, 29 (04) :297-310
[38]  
Wald R., 2010, General Relativity"
[39]  
Waldmann S., 2007, Poisson-Geometrie und Deformationsquantisierung. Eine Einfuhrung