Curving flat space-time by deformation quantization?

被引:3
作者
Much, Albert [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Morelia 58190, Michoacan, Mexico
关键词
NUCLEARITY; PROPERTY; FIELD;
D O I
10.1063/1.4995820
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a deformed differential structure to obtain a curved metric by a deformation quantization of the flat space-time. In particular, by setting the deformation parameters to be equal to physical constants, we obtain the Friedmann-Robertson-Walker (FRW) model for inflation and a deformed version of the FRWspace-time. By calculating classical Einstein-equations for the extended space-time, we obtain non-trivial solutions. Moreover, in this framework, we obtain theMoyal-Weyl, i.e., a constant noncommutative space-time, as a consistency condition. Published by AIP Publishing.
引用
收藏
页数:18
相关论文
共 39 条
[1]   Operator Deformations in Quantum Measurement Theory [J].
Andersson, Andreas .
LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (04) :415-430
[2]  
Ashtekar A., 2013, INTRO LOOP QUANTUM G, P31
[3]   Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators [J].
Bahns, D. ;
Doplicher, S. ;
Fredenhagen, K. ;
Piacitelli, G. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (03) :567-589
[4]  
Ballesteros A., 2016, 8 INT WORKSH SPAC MA
[5]   Gravity induced from quantum spacetime [J].
Beggs, Edwin J. ;
Majid, Shahn .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (03)
[6]   Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories [J].
Buchholz, Detlev ;
Lechner, Gandalf ;
Summers, Stephen J. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (01) :95-123
[7]   WARPED CONVOLUTIONS: A NOVEL TOOL IN THE CONSTRUCTION OF QUANTUM FIELD THEORIES [J].
Buchholz, Detlev ;
Summers, Stephen J. .
QUANTUM FIELD THEORY AND BEYOND: ESSAYS IN HONOR OF WOLFHART ZIMMERMANN, 2008, :107-+
[8]   Generalized quantum relativistic kinematics: A stability point of view [J].
Chryssomalakos, C ;
Okon, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (10) :2003-2034
[9]  
Connes A., 1995, Noncommutative Geometry
[10]  
Dappiaggi C., 2010, LECT NOTES