Salicylic Acid- and Ascorbic Acid-Induced Salt Tolerance in Mung bean (Vigna radiata (L.) Wilczek) Accompanied by Oxidative Defense Mechanisms

被引:13
作者
Nawaz, Maria [1 ,2 ]
Ashraf, Muhammad Yasin [3 ]
Khan, Ameer [1 ,4 ]
Nawaz, Fahim [5 ,6 ]
机构
[1] Univ Sargodha, Dept Bot, Sargodha 40100, Pakistan
[2] Univ Gujrat, Dept Bot, Gujrat 50700, Pakistan
[3] Univ Lahore, Inst Mol Biol, Lahore, Pakistan
[4] Univ Educ, Div Sci & Technol, Dept Bot, Lahore, Pakistan
[5] Univ Hohenheim, Inst Crop Sci 340h, D-70599 Stuttgart, Germany
[6] MNS Univ Agr, Dept Agron, Multan, Pakistan
关键词
Ascorbic acid; Salicylic acid; Pigments; Antioxidative machinery; Mung  bean; Salinity; MAIZE ZEA-MAYS; WHEAT TRITICUM-AESTIVUM; ANTIOXIDANT CAPACITY; BIOCHEMICAL-CHANGES; STRESS TOLERANCE; NITRIC-OXIDE; AMINO-ACIDS; GROWTH; PLANTS; PROLINE;
D O I
10.1007/s42729-021-00502-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The present study aimed at investigating the physiochemical role of phytoprotectants, i.e., salicylic acid (SA) and ascorbic acid (AsA), to induce salt tolerance (0, 80 mM NaCl) in two indigenous mung bean varieties, viz. NM-92 (salt tolerant) and NM-28 (salt sensitive). The mung bean varieties were exposed to salinity stress (80 mM NaCl) after 1 week of germination and then exogenously sprayed with different levels of SA and AsA (0, 50, 100, 150 mg L-1) on appearance of stress symptoms. The experiment was carried out in a completely randomized design with three replications. Salinity stress significantly reduced the growth attributes and photosynthetic pigments and considerably increased electrolyte leakage (92-94%), lipoxygenase activity (113-152%), malondialdehyde (103-105%), and hydrogen peroxide (44-46%) contents. Treatment of control plants (0 mM NaCl) with SA or ASA did not significantly reduce growth attributes and photosynthetic pigments. However, exogenous SA and AsA (0, 50, 100, 150 mg L-1) markedly enhanced salt stress tolerance by reducing electrolyte leakage (26-34%), lipoxygenase activities (45-51%), and malondialdehyde (32-37%) and hydrogen peroxide concentration (17.2-17.5%) due to higher accumulation of stress metabolites and antioxidative enzymes. The highest increase in stress tolerance was recorded by foliar application of (100 mg L-1 SA) in NM-92. We conclude that application of 100 mg L-1 SA is an effective approach to increase salt tolerance in mung bean. Moreover, the cultivation of salt-tolerant cultivars such as NM-92 is recommended to obtain better mung bean yields in salt-affected areas.
引用
收藏
页码:2057 / 2071
页数:15
相关论文
共 60 条
[1]   Increasing Ascorbic Acid Content and Salinity Tolerance of Cherry Tomato Plants by Suppressed Expression of the Ascorbate Oxidase Genes [J].
Abdelgawad, Karima F. ;
El-Mogy, Mohamed M. ;
Mohamed, Mohamed I. A. ;
Garchery, Cecile ;
Stevens, Rebecca G. .
AGRONOMY-BASEL, 2019, 9 (02)
[2]   Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils [J].
Abiala, Moses Akindele ;
Abdelrahman, Mostafa ;
Burritt, David J. ;
Lam-Son Phan Tran .
LAND DEGRADATION & DEVELOPMENT, 2018, 29 (10) :3812-3822
[3]   Essential Roles and Hazardous Effects of Nickel in Plants [J].
Ahmad, Muhammad Sajid Aqeel ;
Ashraf, Muhammad .
REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, VOL 214, 2011, 214 :125-167
[4]   Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea [J].
Ahmad, Parvaiz ;
Latef, Arafat A. Abdel ;
Hashem, Abeer ;
Abd Allah, Elsayed F. ;
Gucel, Salih ;
Tran, Lam-Son P. .
FRONTIERS IN PLANT SCIENCE, 2016, 7
[5]  
Anaya F., 2018, Journal of the Saudi Society of Agricultural Sciences, V17, P1, DOI 10.1016/j.jssas.2015.10.002
[6]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[7]   Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.) [J].
Husen A. ;
Iqbal M. ;
Sohrab S.S. ;
Ansari M.K.A. .
Agriculture & Food Security, 7 (1)
[8]   A RE-EXAMINATION OF RELATIVE TURGIDITY TECHNIQUE FOR ESTIMATING WATER DEFICITS IN LEAVES [J].
BARRS, HD ;
WEATHERLEY, PE .
AUSTRALIAN JOURNAL OF BIOLOGICAL SCIENCES, 1962, 15 (03) :413-&
[9]   Enhancement of postharvest sensory quality and antioxidant capacity of sweet pepper fruits by foliar applying calcium lactate and ascorbic acid [J].
Barzegar, Taher ;
Fateh, Mahsa ;
Razavi, Farhang .
SCIENTIA HORTICULTURAE, 2018, 241 :293-303
[10]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207