Euler Characteristics of Hilbert Schemes of Points On Surfaces with Simple Singularities

被引:7
作者
Gyenge, Adam [1 ]
Nemethi, Andras [1 ]
Szendroi, Balazs [2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
ALGEBRAS; REPRESENTATIONS;
D O I
10.1093/imrn/rnw139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is an announcement of conjectures and results concerning the generating series of Euler characteristics of Hilbert schemes of points on surfaces with simple (Kleinian) singularities. For a quotient surface C-2/G with G < SL(2, C) a finite subgroup, we conjecture a formula for this generating series in terms of Lie-theoretic data, which is compatible with existing results for type A singularities. We announce a proof of our conjecture for singularities of type D. The generating series in our conjecture can be seen as a specialized character of the basic representation of the corresponding (extended) affine Lie algebra; we discuss possible representation- theoretic consequences of this fact. Our results, respectively conjectures, imply the modularity of the generating function for surfaces with type A and type D, respectively arbitrary, simple singularities, confirming predictions of S-duality.
引用
收藏
页码:4152 / 4159
页数:8
相关论文
共 16 条
[1]  
CHEAH J, 1996, J ALGEBRAIC GEOM, V5, P479
[2]   Instantons on ALE spaces and orbifold partitions [J].
Dijkgraaf, Robbert ;
Sulkowski, Piotr .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (03)
[3]  
Etingof P, 2012, MOSC MATH J, V12, P543
[4]   BASIC REPRESENTATIONS OF AFFINE LIE-ALGEBRAS AND DUAL RESONANCE MODELS [J].
FRENKEL, IB ;
KAC, VG .
INVENTIONES MATHEMATICAE, 1980, 62 (01) :23-66
[5]   THE BETTI NUMBERS OF THE HILBERT SCHEME OF POINTS ON A SMOOTH PROJECTIVE SURFACE [J].
GOTTSCHE, L .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :193-207
[6]  
Grojnowski I, 1996, MATH RES LETT, V3, P275
[7]  
MACDONALD IG, 1962, P CAMB PHILOS SOC, V58, P563
[8]   Stable pairs and the HOMFLY polynomial [J].
Maulik, Davesh .
INVENTIONES MATHEMATICAE, 2016, 204 (03) :787-831
[9]   Quiver varieties and finite dimensional representations of quantum affine algebras [J].
Nakajima, H .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (01) :145-238
[10]   Heisenberg algebra and Hilbert schemes of points on projective surfaces [J].
Nakajima, H .
ANNALS OF MATHEMATICS, 1997, 145 (02) :379-388