Additives for reducing nitrogen loss during composting: A review

被引:178
作者
Shan, Guangchun [1 ,2 ,3 ,4 ]
Li, Weiguang [3 ,4 ]
Gao, Yujuan [1 ,2 ]
Tan, Wenbing [1 ,2 ]
Xi, Beidou [1 ,2 ]
机构
[1] Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China
[2] Chinese Res Inst Environm Sci, State Environm Protect Key Lab Simulat & Control, Beijing 100012, Peoples R China
[3] Harbin Inst Technol, Sch Environm, Harbin 150090, Peoples R China
[4] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
Composting; Additives; Nitrogen retention; GREENHOUSE-GAS EMISSIONS; NITRIFICATION INHIBITOR DICYANDIAMIDE; MEDICAL STONE AMENDMENT; SEWAGE-SLUDGE; PIG MANURE; FOOD WASTE; GASEOUS EMISSIONS; ORGANIC-MATTER; AMMONIA EMISSION; HEAVY-METALS;
D O I
10.1016/j.jclepro.2021.127308
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
NH3 and N2O emissions account for 79%-94% and 0.2%-9.9% of total nitrogen losses in composting, respectively. They not only cause serious environmental problems such as odor emission, global warming, and ozone depletion but also reduce the quality of compost products. Additives can reduce the nitrogen loss that occurs during composting by adsorbing NH3/NH4+, reducing the pH of the composting pile, forming struvite, and enhancing nitrification. However, because a wide range of additives have been investigated to reduce nitrogen loss during composting, the additives tend to be diversified and complicated. Herein, we review the recent literature on nitrogen retention of composting process done using additives and categorize the additives into physical, chemical, and microbial based on their characteristics and nitrogen conservation mechanism. Physical, chemical (except dicyandiamide), and microbial additives can reduce 38.5%, 51.3%, 33% of NH3 loss and 50.3%, 0.67%, 21.58% of N2O loss during composting, respectively. Dicyandiamide is a nitrification inhibitor that has no significant effect on NH3 emissions during composting, but it can significantly reduce N2O emissions by 63.01%. It is notable that physical (mineral) and chemical additives have high nitrogen retention properties, but they have the problems of high salt ion and unknown soil accumulation effect. Nonreusable additives are known to increase the cost of composting and affect its large-scale application. Microbial additives are advantageous in terms of cost and environmental friendliness. Regarding the future prospects, we highlight the following three research topics: compound additives, reusable porous materials, and the activity of microbial additives in various composting processes, which require further investigation to reduce nitrogen loss in composting. However, further research is needed to evaluate the economic feasibility of additives to accelerate their large-scale application in composting.
引用
收藏
页数:15
相关论文
共 148 条
[1]   Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting [J].
Agyarko-Mintah, Eunice ;
Cowie, Annette ;
Van Zwieten, Lukas ;
Singh, Bhupinder Pal ;
Smillie, Robert ;
Harden, Steven ;
Fornasier, Flavio .
WASTE MANAGEMENT, 2017, 61 :129-137
[2]   CONSERVATION OF AMMONIA DURING FOOD WASTE COMPOSTING [J].
Al-Jabi, L. F. ;
Halalsheh, M. M. ;
Badarneh, D. M. .
ENVIRONMENTAL TECHNOLOGY, 2008, 29 (10) :1067-1073
[3]   Influence of medical stone amendment on gaseous emissions, microbial biomass and abundance of ammonia oxidizing bacteria genes during biosolids composting [J].
Awasthi, Mukesh Kumar ;
Wang, Quan ;
Awasthi, Sanjeev Kumar ;
Wang, Meijing ;
Chen, Hongyu ;
Ren, Xiuna ;
Zhao, Junchao ;
Zhang, Zengqiang .
BIORESOURCE TECHNOLOGY, 2018, 247 :970-979
[4]   Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost [J].
Awasthi, Mukesh Kumar ;
Wang, Meijing ;
Pandey, Ashok ;
Chen, Hongyu ;
Awasthi, Sanjeev Kumar ;
Wang, Quan ;
Ren, Xiuna ;
Lahori, Altaf Hussain ;
Li, Dong-sheng ;
Li, Ronghua ;
Zhang, Zengqiang .
WASTE MANAGEMENT, 2017, 68 :760-773
[5]   New insight with the effects of biochar amendment on bacterial diversity as indicators of biomarkers support the thermophilic phase during sewage sludge composting [J].
Awasthi, Mukesh Kumar ;
Zhang, Zengqiang ;
Wang, Quan ;
Shen, Feng ;
Li, Ronghua ;
Li, Dong-sheng ;
Ren, Xiuna ;
Wang, Meijing ;
Chen, Hongyu ;
Zhao, Junchao .
BIORESOURCE TECHNOLOGY, 2017, 238 :589-601
[6]   Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting [J].
Awasthi, Mukesh Kumar ;
Wang, Quan ;
Huang, Hui ;
Ren, Xiuna ;
Lahori, Altaf Hussain ;
Mahar, Amanullah ;
Ali, Amjad ;
Shen, Feng ;
Li, Ronghua ;
Zhang, Zengqiang .
BIORESOURCE TECHNOLOGY, 2016, 216 :172-181
[7]   Lignite effects on NH3, N2O, CO2 and CH4 emissions during composting of manure [J].
Bai, Mei ;
Impraim, Robert ;
Coates, Trevor ;
Flesch, Thomas ;
Trouve, Raphael ;
van Grinsven, Hans ;
Cao, Yun ;
Hill, Julian ;
Chen, Deli .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 271
[8]   Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms [J].
Bai, Xue ;
Ye, Zheng-fang ;
Li, Yan-feng ;
Zhou, Lin-cheng ;
Yang, Liu-qing .
PROCESS BIOCHEMISTRY, 2010, 45 (01) :60-66
[9]   Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes [J].
Beck-Friis, B ;
Smårs, S ;
Jönsson, H ;
Kirchmann, H .
JOURNAL OF AGRICULTURAL ENGINEERING RESEARCH, 2001, 78 (04) :423-430
[10]   Algal biochar - production and properties [J].
Bird, Michael I. ;
Wurster, Christopher M. ;
Silva, Pedro H. de Paula ;
Bass, Adrian M. ;
de Nys, Rocky .
BIORESOURCE TECHNOLOGY, 2011, 102 (02) :1886-1891