Electrochemical study of Magnetite-CH composite carbon paste modified electrode

被引:2
作者
Kavitha, Al. [1 ]
Yazhini, Kumanan Bharathi [2 ]
机构
[1] Kings Coll Engn, Punalkulam 613303, India
[2] Alagappa Univ, Karaikkudi, Tamil Nadu, India
关键词
Magnetite; Chitosan; Nanocomposite; Carbon Paste; Modified Electrode; IRON-OXIDE NANOPARTICLES; CHITOSAN; NANOBIOCOMPOSITE; REDUCTION; CELLULOSE; NANOTUBE; SURFACE;
D O I
10.1007/s11814-016-0042-5
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetite nanoparticles were synthesized by coprecipitation and characterized. The average particle size was 22-50 nm by XRD and AFM. Chitosan was prepared from crab shells and characterized. Magnetite-chitosan composite carbon paste modified electrode was prepared and characterized by using XRD, FT-IR and SEM technique. The electrochemical responses of this Magnetite-CH composite electrode were studied in potassium ferrocyanide/KCl system using cyclic voltammetry and electrochemical impedance spectroscopy. The cyclic voltammetric and EIS studies indicated better electron transfer of magnetite-CH composite (3: 1) carbon paste modified electrodes compared to bare, magnetite, chitosan composite electrodes. The surface parameters like surface coverage ((tau)), Diffusion coefficient (D-0), and rate constant (k(S)) were studied. The shelf-life of the developed electrode system is about 12 weeks under refrigerated conditions.
引用
收藏
页码:1948 / 1953
页数:6
相关论文
共 35 条
  • [11] UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating
    Gashti, Mazeyar Parvinzadeh
    Almasian, Arash
    [J]. COMPOSITES PART B-ENGINEERING, 2013, 45 (01) : 282 - 289
  • [12] Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications
    Gupta, AK
    Gupta, M
    [J]. BIOMATERIALS, 2005, 26 (18) : 3995 - 4021
  • [13] Spectroscopic Analyses of Cellulose and Chitosan: FTIR and Modeling Approach
    Ibrahim, Medhat
    Osman, Osama
    Mahmoud, Abdel Aziz
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2011, 8 (01) : 117 - 123
  • [14] Karel V., 2009, J SERB CHEM SOC, V74, P1021
  • [15] Chitosan-iron oxide nanobiocomposite based immunosensor for ochratoxin-A
    Kaushik, Ajeet
    Solanki, Pratima R.
    Ansari, Anees A.
    Ahmad, Sharif
    Malhotra, Bansi D.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (09) : 1364 - 1368
  • [16] Iron oxide-chitosan nanobiocomposite for urea sensor
    Kaushik, Ajeet
    Solanki, Pratima R.
    Ansari, Anees A.
    Sumana, G.
    Ahmad, Sharif
    Malhotra, Bansi D.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2009, 138 (02): : 572 - 580
  • [17] Doping γ-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the α-Fe2O3 structure
    Lai, JR
    Shafi, KVPM
    Loos, K
    Ulman, A
    Lee, Y
    Vogt, T
    Estournès, C
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (38) : 11470 - 11471
  • [18] Lian Y. Z., 2010, CURR APPL PHYS, V10, P828
  • [19] Water dispersible iron oxide nanoparticles coated with covalently linked chitosan
    Lopez-Cruz, Alejandro
    Barrera, Carola
    Calero-DdelC, Victoria L.
    Rinaldi, Carlos
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (37) : 6870 - 6876
  • [20] Pan C., 2009, Journal of Molecular Catalysis B: Enzymatic, V61, P208