Trotter-Kato product formula in symmetric F-normed ideals

被引:2
作者
Akhymbek, Meiram [1 ,2 ]
Levitina, Galina [3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Kensington, NSW 2052, Australia
[2] Inst Math & Math Modeling, Alma Ata 050010, Kazakhstan
[3] Australian Natl Univ, Inst Math Sci, Canberra, ACT 2600, Australia
关键词
Trotter-Kato product formula; symmetric F-normed ideals; log-arithmic submajorization;
D O I
10.4064/sm210708-4-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Trotter-Kato product formula for arbitrary symmetric F-normed ideals which are closed with respect to logarithmic submajorization. This class of ideals include all symmetric quasi-Banach ideals.
引用
收藏
页码:167 / 191
页数:25
相关论文
共 26 条
[1]  
[Anonymous], 1978, Topics in Functional Analysis
[2]   Algebras of Log-Integrable Functions and Operators [J].
Dykema, Ken ;
Sukochev, Fedor ;
Zanin, Dmitriy .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (08) :1775-1787
[3]  
Gohberg I.C., 1969, INTRO THEORY LINEAR
[4]   TRACE NORM CONVERGENCE OF EXPONENTIAL PRODUCT FORMULA [J].
HIAI, F .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 33 (02) :147-158
[5]  
Hiai Fumio, 1997, Banach Centre Publications, V38, P119
[6]   Completeness of symmetric Δ-normed spaces of τ-measurable operators [J].
Huang, Jinghao ;
Levitina, Galina ;
Sukochev, Fedor .
STUDIA MATHEMATICA, 2017, 237 (03) :201-219
[7]  
Hunt RA., 1966, Enseign. Math, V12, P249
[8]  
Kalton N.J., 1984, An F-Space Sampler
[9]  
Kalton NJ, 1998, J REINE ANGEW MATH, V504, P115
[10]   TROTTER-LIE PRODUCT FORMULA [J].
KATO, T .
PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (09) :694-698