Global existence and energy decay of solutions for Kirchhoff-Carrier equations with weakly nonlinear dissipation

被引:1
作者
Benaissa, A
Rahmani, L
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Fac Sci, Dept Math, Sidi Bel Abbes 22000, Algeria
[2] Univ Mouloud Mammeri, Fac Sci, Dept Math, Tiziouzou 15000, Algeria
关键词
quasilinear wave equation; global existence; asymptotic behavior; nonlinear dissipative term; multiplier method;
D O I
10.36045/bbms/1102689121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the global existence and study decay property of the solutions to the initial boundary value problem for the solutions to the quasilinear wave equation of Kirchhoff-Carrier type with a general weakly nonlinear dissipative term by constructing a stable set in H-2 boolean AND H-0(1).
引用
收藏
页码:547 / 574
页数:28
相关论文
共 20 条
[1]  
Aassila M, 1998, MATH METHOD APPL SCI, V21, P1185, DOI 10.1002/(SICI)1099-1476(19980910)21:13<1185::AID-MMA989>3.0.CO
[2]  
2-Q
[3]  
Aassila M., 2001, DIFFERENTIAL INTEGRA, V14, P1301
[4]  
[Anonymous], 1996, HIROSHIMA MATH J
[5]   Global existence and polynomial decrease of energy of solutions of mildly degenerate Kirchoff-Carrier equations with dissipative nonlinear terms [J].
Benaisa, A .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2001, 8 (04) :607-622
[6]  
Benaissa A., 2002, Colloq. Math, V94, P103, DOI [https://doi.org/10.4064/CM94-1-8, DOI 10.4064/CM94-1-8]
[7]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308
[8]  
Gourdin D, 1996, J MATH PURE APPL, V75, P569
[9]   Some remarks on the wave equations with nonlinear damping and source terms [J].
Ikehata, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (10) :1165-1175
[10]  
KAJITANI K, 1994, ANN SC SUP PISA, V4, P279