Linked Biomedical Dataspace: Lessons Learned Integrating Data for Drug Discovery

被引:0
作者
Hasnain, Ali [1 ]
Kamdar, Maulik R. [1 ]
Hasapis, Panagiotis [2 ]
Zeginis, Dimitris [3 ,4 ]
Warren, Claude N., Jr. [5 ]
Deus, Helena F. [6 ]
Ntalaperas, Dimitrios [2 ]
Tarabanis, Konstantinos [3 ,4 ]
Mehdi, Muntazir [1 ]
Decker, Stefan [1 ]
机构
[1] Natl Univ Ireland, Insight Ctr Data Analyt, Galway, Ireland
[2] UBITECH Res, Athens, Greece
[3] Ctr Res & Technol Hellas, Thessaloniki, Greece
[4] Univ Macedonia, Informat Syst Lab, Thessaloniki, Greece
[5] Xenei Com, Cambridge, MA USA
[6] Fdn Med Inc, Cambridge, MA USA
来源
SEMANTIC WEB - ISWC 2014, PT I | 2014年 / 8796卷
关键词
Linked Data; Drug Discovery; SPARQL Federation; Visualization; Biomedical Research; SEMANTIC WEB; LANGUAGE; SYSTEM; ONTOLOGIES; TOOL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The increase in the volume and heterogeneity of biomedical data sources has motivated researchers to embrace Linked Data (LD) technologies to solve the ensuing integration challenges and enhance information discovery. As an integral part of the EU GRANATUM project, a Linked Biomedical Dataspace (LBDS) was developed to semantically interlink data from multiple sources and augment the design of in silico experiments for cancer chemoprevention drug discovery. The different components of the LBDS facilitate both the bioinformaticians and the biomedical researchers to publish, link, query and visually explore the heterogeneous datasets. We have extensively evaluated the usability of the entire platform. In this paper, we showcase three different workflows depicting real-world scenarios on the use of LBDS by the domain users to intuitively retrieve meaningful information from the integrated sources. We report the important lessons that we learned through the challenges encountered and our accumulated experience during the collaborative processes which would make it easier for LD practitioners to create such dataspaces in other domains. We also provide a concise set of generic recommendations to develop LD platforms useful for drug discovery.
引用
收藏
页码:114 / 130
页数:17
相关论文
共 42 条
[1]  
Alexander K., 2009, LDOW
[2]  
Antoniades A, 2012, IEEE INT C BIOINF BI, P517, DOI 10.1109/BIBE.2012.6399767
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Bio2RDF: Towards a mashup to build bioinformatics knowledge systems [J].
Belleau, Francois ;
Nolin, Marc-Alexandre ;
Tourigny, Nicole ;
Rigault, Philippe ;
Morissette, Jean .
JOURNAL OF BIOMEDICAL INFORMATICS, 2008, 41 (05) :706-716
[5]   Exploring and linking biomedical resources through multidimensional semantic spaces [J].
Berlanga, Rafael ;
Jimenez-Ruiz, Ernesto ;
Nebot, Victoria .
BMC BIOINFORMATICS, 2012, 13
[6]  
Bizer C., 2004, P 3 INT SEM WEB C PR, V2004
[7]   The Unified Medical Language System (UMLS): integrating biomedical terminology [J].
Bodenreider, O .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D267-D270
[8]  
Buil-Aranda C, 2013, LECT NOTES COMPUT SC, V8219, P277, DOI 10.1007/978-3-642-41338-4_18
[9]  
Castillo R, 2010, LECT NOTES COMPUT SC, V6385s, P126, DOI 10.1007/978-3-642-16985-4_12
[10]   A journey to Semantic Web query federation in the life sciences [J].
Cheung, Kei-Hoi ;
Frost, H. Robert ;
Marshall, M. Scott ;
Prud'hommeaux, Eric ;
Samwald, Matthias ;
Zhao, Jun ;
Paschke, Adrian .
BMC BIOINFORMATICS, 2009, 10 :S10