Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures

被引:21
作者
Khan, U. [1 ]
Li, W. J. [1 ]
Adeela, N. [2 ]
Irfan, M. [1 ]
Javed, K. [1 ]
Wan, C. H. [1 ]
Riaz, S. [1 ]
Han, X. F. [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Punjab, Ctr High Energy Phys, Lahore, Pakistan
基金
中国国家自然科学基金;
关键词
EXCHANGE BIAS; ILMENITE; NANOWIRES;
D O I
10.1039/c5nr07946b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R (3) over bar. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of similar to 25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (T-N = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required.
引用
收藏
页码:6064 / 6070
页数:7
相关论文
共 50 条
  • [31] Hybrid Semiconductor Core-Shell Nanowires with Tunable Plasmonic Nanoantennas
    Ozel, Tuncay
    Bourret, Gilles R.
    Schmucker, Abrin L.
    Brown, Keith A.
    Mirkin, Chad A.
    ADVANCED MATERIALS, 2013, 25 (32) : 4515 - 4520
  • [32] Growth and mechanism of branched FeWO4@FeS core-shell nanostructures
    Qian, Jingwen
    Peng, Zhijian
    Fu, Xiuli
    CHEMICAL PHYSICS LETTERS, 2015, 625 : 73 - 77
  • [33] Efficient second harmonic generation in gold-silicon core-shell nanostructures
    Yang, Zhong-Jian
    Zhao, Qian
    Deng, Yan-Hui
    Zhang, Dou
    He, Jun
    OPTICS EXPRESS, 2018, 26 (05): : 5835 - 5844
  • [34] Exchange bias in Co/CoO core-shell nanowires: Role of antiferromagnetic superparamagnetic fluctuations
    Maurer, Thomas
    Zighem, Fatih
    Ott, Frederic
    Chaboussant, Gregory
    Andre, Gilles
    Soumare, Yaghoub
    Piquemal, Jean-Yves
    Viau, Guillaume
    Gatel, Christophe
    PHYSICAL REVIEW B, 2009, 80 (06)
  • [35] The shape evolution of gold seeds and gold@silver core-shell nanostructures
    Wu, Yan
    Jiang, Peng
    Jiang, Ming
    Wang, Tie-Wei
    Guo, Chuan-Fei
    Xie, Si-Shen
    Wang, Zhong-Lin
    NANOTECHNOLOGY, 2009, 20 (30)
  • [36] Tunning exchange bias in inverted antiferromagnetic/ferromagnetic core/shell nanoparticles by binary alloy shells
    Vatansever, Z. D.
    Vatansever, E.
    PHYSICS LETTERS A, 2018, 382 (40) : 2901 - 2907
  • [37] Exploring magnetic disorder in inverted core-shell nanoparticles: the role of surface anisotropy and core/shell coupling
    Ccahuana, Damaso
    De Biasi, Emilio
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (05)
  • [38] Electrical and Magnetic Properties of Co/CoO Core-Shell Clusters
    Groza, Irina
    Morel, Robert
    Brenac, Ariel
    Beigne, Cyrille
    Notin, Lucien
    IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (10) : 3355 - 3357
  • [39] Magnetic properties of mixed Ising nanoparticles with core-shell structure
    Kantar, Ersin
    Deviren, Bayram
    Keskin, Mustafa
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (06)
  • [40] Magnetic Properties of GaAs/NiFe Coaxial Core-Shell Structures
    Monaico, Eduard, V
    Morari, Vadim
    Kutuzau, Maksim
    Ursaki, Veaceslav V.
    Nielsch, Kornelius
    Tiginyanu, Ion M.
    MATERIALS, 2022, 15 (18)