Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures

被引:21
作者
Khan, U. [1 ]
Li, W. J. [1 ]
Adeela, N. [2 ]
Irfan, M. [1 ]
Javed, K. [1 ]
Wan, C. H. [1 ]
Riaz, S. [1 ]
Han, X. F. [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Punjab, Ctr High Energy Phys, Lahore, Pakistan
基金
中国国家自然科学基金;
关键词
EXCHANGE BIAS; ILMENITE; NANOWIRES;
D O I
10.1039/c5nr07946b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R (3) over bar. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of similar to 25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (T-N = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required.
引用
收藏
页码:6064 / 6070
页数:7
相关论文
共 50 条
  • [1] Controllable synthesis of ferromagnetic-antiferromagnetic core-shell NWs with tunable magnetic properties
    Irfan, M.
    Wang, C. J.
    Khan, U.
    Li, W. J.
    Zhang, X. M.
    Kong, W. J.
    Liu, P.
    Wan, C. H.
    Liu, Y. W.
    Han, X. F.
    NANOSCALE, 2017, 9 (17) : 5694 - 5700
  • [2] Exchange-biased hybrid ferromagnetic-multiferroic core-shell nanostructures
    Shi, Da-Wei
    Javed, Khalid
    Ali, Syed Shahbaz
    Chen, Jun-Yang
    Li, Pei-Sen
    Zhao, Yong-Gang
    Han, Xiu-Feng
    NANOSCALE, 2014, 6 (13) : 7215 - 7220
  • [3] Magnetic properties of nanowires with ferromagnetic core and antiferromagnetic shell
    Patsopoulos, A.
    Kechrakos, D.
    Moutis, N.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 475 : 171 - 175
  • [4] FERROMAGNETIC CORE-SHELL COAXIAL NANOSTRUCTURES ON GALLIUM ARSENIDE SUBSTRATES
    Monaico, E., V
    Morari, V
    Kutuzau, M.
    Ursaki, V. V.
    Nielsch, K.
    Tiginyanu, I. M.
    ROMANIAN JOURNAL OF PHYSICS, 2022, 67 (9-10):
  • [5] Ferromagnetic-Antiferromagnetic Coupling Core-Shell Nanoparticles with Spin Conservation for Water Oxidation
    Ge, Jingjie
    Chen, Riccardo Ruixi
    Ren, Xiao
    Liu, Jiawei
    Ong, Samuel Jun Hoong
    Xu, Zhichuan J.
    ADVANCED MATERIALS, 2021, 33 (42)
  • [6] Magnetic Proximity Effect Features in Antiferromagnetic/Ferrimagnetic Core-Shell Nanoparticles
    Golosovsky, I. V.
    Salazar-Alvarez, G.
    Lopez-Ortega, A.
    Gonzalez, M. A.
    Sort, J.
    Estrader, M.
    Surinach, S.
    Baro, M. D.
    Nogues, J.
    PHYSICAL REVIEW LETTERS, 2009, 102 (24)
  • [7] Decoupling of magnetic core and shell contributions in antiferromagnetic Co3O4 nanostructures
    Benitez, M. J.
    Petracic, O.
    Tueysuez, H.
    Schueth, F.
    Zabel, H.
    EPL, 2009, 88 (02)
  • [8] Effect of cooling field strength and ferromagnetic shell shape on exchange bias in nanoparticles with inverted ferromagnetic-antiferromagnetic core-shell morphology
    Hu, Yong
    Liu, Yan
    Du, An
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (04): : 972 - 978
  • [9] Effect of Antiferromagnetic Anisotropy on Exchange Bias in a Single Composite Nanoparticle with Unconventional Antiferromagnetic-Ferromagnetic Core-Shell Morphology
    Hu, Yong
    Liu, Yan
    Qi, Yan
    Du, An
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2011, 9 : 67 - 71
  • [10] Nanostructured CuO with antiferromagnetic core and weakly ferromagnetic shell
    Raj, A. S. Aiswarya
    Madhu, G.
    Biju, V
    JOURNAL OF SOLID STATE CHEMISTRY, 2019, 278