Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations

被引:251
作者
Iwata, R
Suk-In, P
Hoven, VP
Takahara, A
Akiyoshi, K
Iwasaki, Y
机构
[1] Tokyo Med & Dent Univ, Inst Biomat & Bioengn, Chiyoda Ku, Tokyo 1010062, Japan
[2] Chulalongkorn Univ, Fac Sci, Dept Chem, Bangkok 10330, Thailand
[3] Kyushu Univ, Inst Mat Chem & Engn, Higashi Ku, Fukuoka 8128581, Japan
关键词
D O I
10.1021/bm049613k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To better understand protein/material and cell/material interactions at the submolecular level, well-defined polymer brushes consisting of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) on silicon wafers were prepared by atom transfer radical polymerization (ATRP). Silicon wafers were treated with 3-(2-bromoisobutyryl)propyl dimethylchlorosilane (BDCS) to form a monolayer that acts as initiators for ATRP. Silicon-supported BDCS monolayers were soaked in a methanol/water mixture solution containing Cu(I)Br, bipyridine, and a sacrificial initiator. After MPC was added to the solution, ATRP was carried out for 18 h. The molecular weight and thickness of the PMPC brush layer on the silicon surface increased with an increase in the polymerization time. The dense polymer brushes were obtained by the "grafting from" system. By selective decomposition of the BDCS monolayer by UV light-irradiation, the PMPC brush region and the sizes were well controlled, resulting in fabricating micropatterris of the PMPC brushes. When the thickness of the PMPC brush layer was greater than 5.5 +/- 1.0 nm (3 h polymerization), serum protein adsorption and fibroblast adhesion were effectively reduced, i.e., proteins and cells could recognize such thin polymer brushes on the surface. In addition, the density of the adherent cells on the patterned PMPC brush surface could be controlled by changing the size of the pattern.
引用
收藏
页码:2308 / 2314
页数:7
相关论文
共 59 条
[1]   Synthesis of molecular brushes with block copolymer side chains using atom transfer radical polymerization [J].
Börner, HG ;
Beers, K ;
Matyjaszewski, K ;
Sheiko, SS ;
Möller, M .
MACROMOLECULES, 2001, 34 (13) :4375-4383
[2]   Synthesis, characterization, and properties of ABA type triblock copolymer brushes of styrene and methyl acrylate prepared by atom transfer radical polymerization [J].
Boyes, SG ;
Brittain, WJ ;
Weng, X ;
Cheng, SZD .
MACROMOLECULES, 2002, 35 (13) :4960-4967
[3]   Geometric determinants of directional cell motility revealed using microcontact printing [J].
Brock, A ;
Chang, E ;
Ho, CC ;
LeDuc, P ;
Jiang, XY ;
Whitesides, GM ;
Ingber, DE .
LANGMUIR, 2003, 19 (05) :1611-1617
[4]   Modulation of neural network activity by patterning [J].
Chang, JC ;
Brewer, GJ ;
Wheeler, BC .
BIOSENSORS & BIOELECTRONICS, 2001, 16 (7-8) :527-533
[5]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[6]  
CHEN CS, 2002, BIOL, P385
[7]   Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir-Blodgett and atom transfer radical polymerization techniques [J].
Ejaz, M ;
Yamamoto, S ;
Ohno, K ;
Tsujii, Y ;
Fukuda, T .
MACROMOLECULES, 1998, 31 (17) :5934-5936
[8]   Fabrication of patterned high-density polymer graft surfaces. 1. Amplification of phase-separated morphology of organosilane blend monolayer by surface-initiated atom transfer radical polymerization [J].
Ejaz, M ;
Yamamoto, S ;
Tsujii, Y ;
Fukuda, T .
MACROMOLECULES, 2002, 35 (04) :1412-1418
[9]   Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces: Monomolecular and oligomeric covalently attached layers of dichloro- and trichloroalkylsilanes on silicon [J].
Fadeev, AY ;
McCarthy, TJ .
LANGMUIR, 2000, 16 (18) :7268-7274
[10]   Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces [J].
Feng, W ;
Brash, J ;
Zhu, SP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (12) :2931-2942