Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications

被引:107
作者
Visvikis, Dimitris [1 ]
Le Rest, Catherine Cheze [2 ]
Jaouen, Vincent [1 ]
Hatt, Mathieu [1 ]
机构
[1] Univ Brest, Fac Med, IBRBS, LaTIM,INSERM UMR 1101, 22 Ave Camille Desmoulins, F-29238 Brest, France
[2] CHU Miletrie, Nucl Med Dept, Poitiers, France
关键词
Artificial intelligence; Machine learning; Deep learning; Radiomics; Radiogenomics; CONVOLUTIONAL NEURAL-NETWORKS; ATTENUATION CORRECTION; RADIOMICS; CANCER; SEGMENTATION; IMAGES; PET/CT; CLASSIFICATION; PREDICTION; FEATURES;
D O I
10.1007/s00259-019-04373-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Techniques from the field of artificial intelligence, and more specifically machine (deep) learning methods, have been core components of most recent developments in the field of medical imaging. They are already being exploited or are being considered to tackle most tasks, including image reconstruction, processing (denoising, segmentation), analysis and predictive modelling. In this review we introduce and define these key concepts and discuss how the techniques from this field can be applied to nuclear medicine imaging applications with a particular focus on radio(geno)mics.
引用
收藏
页码:2630 / 2637
页数:8
相关论文
共 81 条
  • [21] Iterative PET Image Reconstruction Using Convolutional Neural Network Representation
    Gong, Kuang
    Guan, Jiahui
    Kim, Kyungsang
    Zhang, Xuezhu
    Yang, Jaewon
    Seo, Youngho
    El Fakhri, Georges
    Qi, Jinyi
    Li, Quanzheng
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (03) : 675 - 685
  • [22] Guo Z, 2019, IEEE T RADIAT PLASMA, V3, P162, DOI [10.1109/TRPMS.2018.2890359, 10.1109/trpms.2018.2890359]
  • [23] Guyon I., 2020, J MACH LEARN RES, V3, P1157, DOI [DOI 10.1162/153244303322753616, 10.1162/153244303322753616]
  • [24] Convolutional Neural Network Using a Breast MRI Tumor Dataset Can Predict Oncotype Dx Recurrence Score
    Ha, Richard
    Chang, Peter
    Mutasa, Simukayi
    Karcich, Jenika
    Goodman, Sarah
    Blum, Elyse
    Kalinsky, Kevin
    Liu, Michael Z.
    Jambawalikar, Sachin
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (02) : 518 - 524
  • [25] HATT M, 2018, J NUCL MED S1, V59
  • [26] Machine (Deep) Learning Methods for Image Processing and Radiomics
    Hatt, Mathieu
    Parmar, Chintan
    Qi, Jinyi
    El Naqa, Issam
    [J]. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) : 104 - 108
  • [27] The first MICCAI challenge on PET tumor segmentation
    Hatt, Mathieu
    Laurent, Baptiste
    Ouahabi, Anouar
    Fayad, Hadi
    Tan, Shan
    Li, Laquan
    Lu, Wei
    Jaouen, Vincent
    Tauber, Clovis
    Czakon, Jakub
    Drapejkowski, Filip
    Dyrka, Witold
    Camarasu-Pop, Sorina
    Cervenansky, Frederic
    Girard, Pascal
    Glatard, Tristan
    Kain, Michael
    Yao, Yao
    Barillot, Christian
    Kirov, Assen
    Visvikis, Dimitris
    [J]. MEDICAL IMAGE ANALYSIS, 2018, 44 : 177 - 195
  • [28] Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211
    Hatt, Mathieu
    Lee, John A.
    Schmidtlein, Charles R.
    El Naqa, Issam
    Caldwell, Curtis
    De Bernardi, Elisabetta
    Lu, Wei
    Das, Shiva
    Geets, Xavier
    Gregoire, Vincent
    Jeraj, Robert
    MacManus, Michael P.
    Mawlawi, Osama R.
    Nestle, Ursula
    Pugachev, Andrei B.
    Schoeder, Heiko
    Shepherd, Tony
    Spezi, Emiliano
    Visvikis, Dimitris
    Zaidi, Habib
    Kirov, Assen S.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : E1 - E42
  • [29] Radiomics in PET/CT: More Than Meets the Eye?
    Hatt, Mathieu
    Tixier, Florent
    Visvikis, Dimitris
    Le Rest, Catherine Cheze
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (03) : 365 - 366
  • [30] Enhancing the Image Quality via Transferred Deep Residual Learning of Coarse PET Sinograms
    Hong, Xiang
    Zan, Yunlong
    Weng, Fenghua
    Tao, Weijie
    Peng, Qiyu
    Huang, Qiu
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (10) : 2322 - 2332