Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications

被引:113
作者
Visvikis, Dimitris [1 ]
Le Rest, Catherine Cheze [2 ]
Jaouen, Vincent [1 ]
Hatt, Mathieu [1 ]
机构
[1] Univ Brest, Fac Med, IBRBS, LaTIM,INSERM UMR 1101, 22 Ave Camille Desmoulins, F-29238 Brest, France
[2] CHU Miletrie, Nucl Med Dept, Poitiers, France
关键词
Artificial intelligence; Machine learning; Deep learning; Radiomics; Radiogenomics; CONVOLUTIONAL NEURAL-NETWORKS; ATTENUATION CORRECTION; RADIOMICS; CANCER; SEGMENTATION; IMAGES; PET/CT; CLASSIFICATION; PREDICTION; FEATURES;
D O I
10.1007/s00259-019-04373-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Techniques from the field of artificial intelligence, and more specifically machine (deep) learning methods, have been core components of most recent developments in the field of medical imaging. They are already being exploited or are being considered to tackle most tasks, including image reconstruction, processing (denoising, segmentation), analysis and predictive modelling. In this review we introduce and define these key concepts and discuss how the techniques from this field can be applied to nuclear medicine imaging applications with a particular focus on radio(geno)mics.
引用
收藏
页码:2630 / 2637
页数:8
相关论文
共 81 条
[21]   Iterative PET Image Reconstruction Using Convolutional Neural Network Representation [J].
Gong, Kuang ;
Guan, Jiahui ;
Kim, Kyungsang ;
Zhang, Xuezhu ;
Yang, Jaewon ;
Seo, Youngho ;
El Fakhri, Georges ;
Qi, Jinyi ;
Li, Quanzheng .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (03) :675-685
[22]  
Guo Z, 2019, IEEE T RADIAT PLASMA, V3, P162, DOI [10.1109/TRPMS.2018.2890359, 10.1109/trpms.2018.2890359]
[23]  
Guyon I., 2020, J MACH LEARN RES, V3, P1157, DOI [DOI 10.1162/153244303322753616, 10.1162/153244303322753616]
[24]   Convolutional Neural Network Using a Breast MRI Tumor Dataset Can Predict Oncotype Dx Recurrence Score [J].
Ha, Richard ;
Chang, Peter ;
Mutasa, Simukayi ;
Karcich, Jenika ;
Goodman, Sarah ;
Blum, Elyse ;
Kalinsky, Kevin ;
Liu, Michael Z. ;
Jambawalikar, Sachin .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (02) :518-524
[25]  
HATT M, 2018, J NUCL MED S1, V59
[26]   Machine (Deep) Learning Methods for Image Processing and Radiomics [J].
Hatt, Mathieu ;
Parmar, Chintan ;
Qi, Jinyi ;
El Naqa, Issam .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) :104-108
[27]   The first MICCAI challenge on PET tumor segmentation [J].
Hatt, Mathieu ;
Laurent, Baptiste ;
Ouahabi, Anouar ;
Fayad, Hadi ;
Tan, Shan ;
Li, Laquan ;
Lu, Wei ;
Jaouen, Vincent ;
Tauber, Clovis ;
Czakon, Jakub ;
Drapejkowski, Filip ;
Dyrka, Witold ;
Camarasu-Pop, Sorina ;
Cervenansky, Frederic ;
Girard, Pascal ;
Glatard, Tristan ;
Kain, Michael ;
Yao, Yao ;
Barillot, Christian ;
Kirov, Assen ;
Visvikis, Dimitris .
MEDICAL IMAGE ANALYSIS, 2018, 44 :177-195
[28]   Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211 [J].
Hatt, Mathieu ;
Lee, John A. ;
Schmidtlein, Charles R. ;
El Naqa, Issam ;
Caldwell, Curtis ;
De Bernardi, Elisabetta ;
Lu, Wei ;
Das, Shiva ;
Geets, Xavier ;
Gregoire, Vincent ;
Jeraj, Robert ;
MacManus, Michael P. ;
Mawlawi, Osama R. ;
Nestle, Ursula ;
Pugachev, Andrei B. ;
Schoeder, Heiko ;
Shepherd, Tony ;
Spezi, Emiliano ;
Visvikis, Dimitris ;
Zaidi, Habib ;
Kirov, Assen S. .
MEDICAL PHYSICS, 2017, 44 (06) :E1-E42
[29]   Radiomics in PET/CT: More Than Meets the Eye? [J].
Hatt, Mathieu ;
Tixier, Florent ;
Visvikis, Dimitris ;
Le Rest, Catherine Cheze .
JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (03) :365-366
[30]   Enhancing the Image Quality via Transferred Deep Residual Learning of Coarse PET Sinograms [J].
Hong, Xiang ;
Zan, Yunlong ;
Weng, Fenghua ;
Tao, Weijie ;
Peng, Qiyu ;
Huang, Qiu .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (10) :2322-2332