Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications

被引:107
作者
Visvikis, Dimitris [1 ]
Le Rest, Catherine Cheze [2 ]
Jaouen, Vincent [1 ]
Hatt, Mathieu [1 ]
机构
[1] Univ Brest, Fac Med, IBRBS, LaTIM,INSERM UMR 1101, 22 Ave Camille Desmoulins, F-29238 Brest, France
[2] CHU Miletrie, Nucl Med Dept, Poitiers, France
关键词
Artificial intelligence; Machine learning; Deep learning; Radiomics; Radiogenomics; CONVOLUTIONAL NEURAL-NETWORKS; ATTENUATION CORRECTION; RADIOMICS; CANCER; SEGMENTATION; IMAGES; PET/CT; CLASSIFICATION; PREDICTION; FEATURES;
D O I
10.1007/s00259-019-04373-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Techniques from the field of artificial intelligence, and more specifically machine (deep) learning methods, have been core components of most recent developments in the field of medical imaging. They are already being exploited or are being considered to tackle most tasks, including image reconstruction, processing (denoising, segmentation), analysis and predictive modelling. In this review we introduce and define these key concepts and discuss how the techniques from this field can be applied to nuclear medicine imaging applications with a particular focus on radio(geno)mics.
引用
收藏
页码:2630 / 2637
页数:8
相关论文
共 81 条
  • [1] Aerts H, SPIE MED IM 2016 COM, DOI [10.1117/12.2214251, DOI 10.1117/12.2214251]
  • [2] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] 3-D RPET-NET: Development of a 3-D PET Imaging Convolutional Neural Network for Radiomics Analysis and Outcome Prediction
    Amyar, A.
    Ruan, S.
    Gardin, I.
    Chatelain, C.
    Decazes, P.
    Modzelewski, R.
    [J]. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) : 225 - 231
  • [4] Imaging genomics in cancer research: limitations and promises
    Bai, Harrison X.
    Lee, Ashley M.
    Yang, Li
    Zhang, Paul
    Davatzikos, Christos
    Maris, John M.
    Diskin, Sharon J.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2016, 89 (1061)
  • [5] Innovations in Instrumentation for Positron Emission Tomography
    Berg, Eric
    Cherry, Simon R.
    [J]. SEMINARS IN NUCLEAR MEDICINE, 2018, 48 (04) : 311 - 331
  • [6] Using convolutional neural networks to estimate time-of-flight from PET detector waveforms
    Berg, Eric
    Cherry, Simon R.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (02)
  • [7] Beyer T, 2000, J NUCL MED, V41, P1369
  • [8] Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer (vol 8, 12611, 2018)
    Bibault, Jean-Emmanuel
    Giraud, Philippe
    Housset, Martin
    Durdux, Catherine
    Taieb, Julien
    Berger, Anne
    Coriat, Romain
    Chaussade, Stanislas
    Dousset, Bertrand
    Nordlinger, Bernard
    Burgun, Anita
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [9] Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-Net convolutional neural network study
    Blanc-Durand, Paul
    Van der Gucht, Axel
    Schaefer, Niklaus
    Itti, Emmanuel
    Prior, John O.
    [J]. PLOS ONE, 2018, 13 (04):
  • [10] Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning
    Cha, Kenny H.
    Hadjiiski, Lubomir
    Chan, Heang-Ping
    Weizer, Alon Z.
    Alva, Ajjai
    Cohan, Richard H.
    Caoili, Elaine M.
    Paramagul, Chintana
    Samala, Ravi K.
    [J]. SCIENTIFIC REPORTS, 2017, 7