The Convergence of HPC, AI and Big Data in Rapid-Response to the COVID-19 Pandemic

被引:0
作者
Sukumar, Sreenivas R. [1 ]
Balma, Jacob A. [1 ]
Rickett, Christopher D. [1 ]
Maschhoff, Kristyn J. [1 ]
Landman, Joseph [1 ]
Yates, Charles R. [2 ]
Chittiboyina, Amar G. [2 ]
Peterson, Yuri K. [3 ]
Vose, Aaron [4 ]
Byler, Kendall [5 ]
Baudry, Jerome [5 ]
Khan, Ikhlas A. [2 ]
机构
[1] Hewlett Packard Enterprise HPE, Houston, TX 77070 USA
[2] Univ Mississippi, Oxford, MS USA
[3] Med Univ South Carolina, Charleston, SC 29425 USA
[4] MaxLinear Inc, Carlsbad, CA USA
[5] Univ Alabama, Huntsville, AL 35899 USA
来源
DRIVING SCIENTIFIC AND ENGINEERING DISCOVERIES THROUGH THE INTEGRATION OF EXPERIMENT, BIG DATA, AND MODELING AND SIMULATION | 2022年 / 1512卷
关键词
Drug discovery; High performance computing; Artificial intelligence; Knowledge graphs; PROTEIN; INHIBITORS; DISCOVERY; COUMARIN; DOCKING; DRUGS;
D O I
10.1007/978-3-030-96498-6_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The "Force for Good" pledge of intellectual property to fight COVID-19 brought into action HPE products, resources and expertise to the problem of drug/vaccine discovery. Several scientists and technologists collaborated to accelerate efforts towards a cure. This paper documents the spirit of such a collaboration, the stellar outcomes and the technological lessons learned from the true convergence of high-performance computing (HPC), artificial intelligence (AI) and data science to fight a pandemic. The paper presents technologies that assisted in an end-to-end edge-to-supercomputer pipeline - creating 3D structures of the virus from CryoEM microscopes, filtering through large cheminformatics databases of drug molecules, using artificial intelligence and molecular docking simulations to identify drug candidates that may bind with the 3D structures of the virus, validating the binding activity using in-silico high-fidelity multi-body physics simulations, combing through millions of literature-based facts and assay data to connect-the-dots of evidence to explain or dispute the in-silico predictions. These contributions accelerated scientific discovery by: (i) identifying novel drug molecules that could reduce COVID-19 virality in the human body, (ii) screening drug molecule databases to design wet lab experiments faster and better, (iii) hypothesizing the cross-immunity of Tetanus vaccines based on comparisons of COVID-19 and publicly available protein sequences, and (iv) prioritizing drug compounds that could be repurposed for COVID-19 treatment. We present case studies around each of the aforementioned outcomes and posit an accelerated future of drug discovery in an augmented and converged workflow of data science, high-performance computing and artificial intelligence.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 46 条
[1]   Prekinamycin and an isosteric-isoelectronic analogue exhibit comparable cytotoxicity towards K562 human leukemia cells [J].
Abbott, Glenn L. ;
Wu, Xing ;
Zhao, Zhufeng ;
Guo, Lei ;
Birman, Vladimir B. ;
Hasinoff, Brian B. ;
Dmitrienko, Gary I. .
MEDCHEMCOMM, 2014, 5 (09) :1364-1370
[2]   Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-ToIC Multidrug Efflux Pump [J].
Abdali, Narges ;
Parks, Jerry M. ;
Haynes, Keith M. ;
Chaney, Julie L. ;
Green, Adam T. ;
Wolloscheck, David ;
Walker, John K. ;
Rybenkov, Valentin V. ;
Baudry, Jerome ;
Smith, Jeremy C. ;
Zgurskaya, Helen I. .
ACS INFECTIOUS DISEASES, 2017, 3 (01) :89-98
[3]  
Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI [10.1093/nar/gkw1099, 10.1093/nar/gkh131]
[4]   Deep Learning Predicts Protein-Ligand Interactions [J].
Balma, Jacob ;
Vose, Aaron D. ;
Peterson, Yuri K. ;
Chittiboyina, Amar G. ;
Pandey, Pankaj ;
Yates, Charles R. ;
Khan, Ikhlas A. ;
Sukumar, Sreenivas R. .
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, :5627-5629
[5]   Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model [J].
Beck, Bo Ram ;
Shin, Bonggun ;
Choi, Yoonjung ;
Park, Sungsoo ;
Kang, Keunsoo .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :784-790
[6]   Bio2RDF: Towards a mashup to build bioinformatics knowledge systems [J].
Belleau, Francois ;
Nolin, Marc-Alexandre ;
Tourigny, Nicole ;
Rigault, Philippe ;
Morissette, Jean .
JOURNAL OF BIOMEDICAL INFORMATICS, 2008, 41 (05) :706-716
[7]   A Novel Cyclodione Coumarin from the Stem Bark of Mesua beccariana [J].
Ee, Gwendoline Cheng Lian ;
Teh, Soek Sin ;
Mah, Siau Hui ;
Rahmani, Mawardi ;
Taufiq-Yap, Yun Hin ;
Awang, Khalijah .
MOLECULES, 2011, 16 (09) :7249-7255
[8]   The Reactome Pathway Knowledgebase [J].
Fabregat, Antonio ;
Jupe, Steven ;
Matthews, Lisa ;
Sidiropoulos, Konstantinos ;
Gillespie, Marc ;
Garapati, Phani ;
Haw, Robin ;
Jassal, Bijay ;
Korninger, Florian ;
May, Bruce ;
Milacic, Marija ;
Roca, Corina Duenas ;
Rothfels, Karen ;
Sevilla, Cristoffer ;
Shamovsky, Veronica ;
Shorser, Solomon ;
Varusai, Thawfeek ;
Viteri, Guilherme ;
Weiser, Joel ;
Wu, Guanming ;
Stein, Lincoln ;
Hermjakob, Henning ;
D'Eustachio, Peter .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D649-D655
[9]   ChEMBL: a large-scale bioactivity database for drug discovery [J].
Gaulton, Anna ;
Bellis, Louisa J. ;
Bento, A. Patricia ;
Chambers, Jon ;
Davies, Mark ;
Hersey, Anne ;
Light, Yvonne ;
McGlinchey, Shaun ;
Michalovich, David ;
Al-Lazikani, Bissan ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D1100-D1107
[10]   Network medicine framework for identifying drug-repurposing opportunities for COVID-19 [J].
Gysi, Deisy Morselli ;
do Valle, Italo ;
Zitnik, Marinka ;
Ameli, Asher ;
Gan, Xiao ;
Varol, Onur ;
Ghiassian, Susan Dina ;
Patten, J. J. ;
Davey, Robert A. ;
Loscalzo, Joseph ;
Barabasi, Albert-Laszlo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (19)