Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment

被引:22
作者
Iakovlev, V. Ya. [1 ]
Sklyueva, Yu. A. [1 ]
Fedorov, F. S. [1 ]
Rupasov, D. P. [2 ]
Kondrashov, V. A. [1 ]
Grebenko, A. K. [1 ]
Mikheev, K. G. [3 ]
Gilmutdinov, F. Z. [4 ]
Anisimov, A. S. [5 ]
Mikheev, G. M. [3 ]
Nasibulin, A. G. [1 ,6 ]
机构
[1] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Lab Nanomat, 3 Nobel St, Skolkovo 121205, Russia
[2] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Ctr Electrochem Energy Storage, 3 Nobel St, Skolkovo 121205, Russia
[3] UB RAS, Udmurt Fed Res Ctr, Inst Mech, T Baramzinoy St 34, Izhevsk 426067, Russia
[4] UB RAS, Udmurt Fed Res Ctr, Phys Tech Inst, Kirova St 132, Izhevsk 426000, Russia
[5] Canatu Ltd, Konalankuja 5, Helsinki 00390, Finland
[6] Aalto Univ, Dept Appl Phys, Puumiehenkuja 00076, Aalto, Finland
基金
俄罗斯科学基金会;
关键词
Single-walled carbon nanotubes; Laser treatment; Chemical composition; Transmittance; Sheet resistance; GRAPHENE OXIDE-FILMS; TRANSPARENT CONDUCTORS; THERMAL CONTACTS; THIN-FILMS; IRRADIATION; ELECTRODES; GROWTH; FUNCTIONALIZATION; SPECTROSCOPY; GRAPHITE;
D O I
10.1016/j.diamond.2018.07.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An implementation of carbon nanotube films in optoelectronic devices is still a challenging task which requires further improvement of their both optical and electrical properties. Here, we report an approach to enhance the transmittance of single-walled carbon nanotube films placed onto polymeric substrates without losses in the film conductivity by a low-power laser treatment. Laser pulses facilitate oxidation of nanotube caps thereby exposing iron catalytic particles due to fast local heating which leads to the oxidation of iron whereas the nanotube structure generally remains intact. Thus, we approached transmittance enhancement mainly across the visible range up to 4% (at 550 nm) associated with equivalent sheet resistance improvement of ca. 21%.
引用
收藏
页码:144 / 150
页数:7
相关论文
共 54 条
[1]   Carbon nanotube sheets as electrodes in organic light-emitting diodes [J].
Aguirre, CM ;
Auvray, S ;
Pigeon, S ;
Izquierdo, R ;
Desjardins, P ;
Martel, R .
APPLIED PHYSICS LETTERS, 2006, 88 (18)
[2]   High remnant polarization in (Sr0.7Bi0.2)TiO3-(Na0.5Bi0.5)TiO3 solid solutions [J].
Ang, Chen ;
Yu, Zhi .
APPLIED PHYSICS LETTERS, 2009, 95 (23)
[3]   Mechanistic investigations of single-walled carbon nanotube synthesis by ferrocene vapor decomposition in carbon monoxide [J].
Anisimov, Anton S. ;
Nasibulin, Albert G. ;
Jiang, Hua ;
Launois, Pascale ;
Cambedouzou, Julien ;
Shandakov, Sergey D. ;
Kauppinen, Esko I. .
CARBON, 2010, 48 (02) :380-388
[4]  
[Anonymous], ADV MAT INTERFACES
[5]   Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method [J].
Anoshkin, Ilya V. ;
Nasibulin, Albert G. ;
Tian, Ying ;
Liu, Bilu ;
Jiang, Hua ;
Kauppinen, Esko I. .
CARBON, 2014, 78 :130-136
[6]   Laser irradiation for purification of aligned carbon nanotube films [J].
Bai, XD ;
Li, D ;
Du, D ;
Zhang, HJ ;
Chen, LF ;
Liang, J .
CARBON, 2004, 42 (10) :2125-2127
[7]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[8]   Carbon nanotubes and organic solar cells [J].
Cataldo, Sebastiano ;
Salice, Patrizio ;
Menna, Enzo ;
Pignataro, Bruno .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) :5919-5940
[9]   Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J].
Dal, HJ ;
Rinzler, AG ;
Nikolaev, P ;
Thess, A ;
Colbert, DT ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1996, 260 (3-4) :471-475
[10]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539