Optimal working point in dissipative quantum annealing

被引:22
|
作者
Arceci, Luca [1 ]
Barbarino, Simone [1 ]
Rossini, Davide [2 ,3 ]
Santoro, Giuseppe E. [1 ,4 ,5 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[3] Ist Nazl Fis Nucl, Largo Pontecorvo 3, I-56127 Pisa, Italy
[4] CNR IOM Democritos Natl Simulat Ctr, Via Bonomea 265, I-34136 Trieste, Italy
[5] Abdus Salaam Int Ctr Theoret Phys, POB 586, I-34014 Trieste, Italy
关键词
ISING-MODEL; ADIABATIC EVOLUTION; SPIN-GLASS; SYSTEMS; ALGORITHM; DYNAMICS;
D O I
10.1103/PhysRevB.98.064307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the effect of a thermal environment on the quantum annealing dynamics of a transverse-field Ising chain. The environment is modeled as a single Ohmic bath of quantum harmonic oscillators weakly interacting with the total transverse magnetization of the chain in a translationally invariant manner. We show that the density of defects generated at the end of the annealing process displays a minimum as a function of the annealing time, the so-called optimal working point, only in rather special regions of the bath temperature and coupling strength plane. We discuss the relevance of our results for current and future experimental implementations with quantum annealing hardware.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Annealing-Based Quantum Computing for Combinatorial Optimal Power Flow
    Morstyn, Thomas
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (02) : 1093 - 1102
  • [42] Asymptotically optimal probes for noisy interferometry via quantum annealing to criticality
    Durkin, Gabriel A.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [43] Deep learning optimal quantum annealing schedules for random Ising models
    Hegde, Pratibha Raghupati
    Passarelli, Gianluca
    Cantele, Giovanni
    Lucignano, Procolo
    NEW JOURNAL OF PHYSICS, 2023, 25 (07):
  • [44] Conductance of a dissipative quantum dot: Nonequilibrium crossover near a non-Fermi-liquid quantum critical point
    Zhang, Gu
    Novais, E.
    Baranger, Harold U.
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [45] Dissipative quantum dynamics
    Cugliandolo, Leticia F.
    INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2008 (IW-SMI 2008), 2009, 143
  • [46] DISSIPATIVE QUANTUM MAPS
    GRAHAM, R
    PHYSICA SCRIPTA, 1987, 35 (02): : 111 - 118
  • [47] Dissipative quantum repeater
    Ghasemi, M.
    Tavassoly, M. K.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
  • [48] Quantum dissipative adaptation
    Valente, Daniel
    Brito, Frederico
    Werlang, Thiago
    COMMUNICATIONS PHYSICS, 2021, 4 (01)
  • [49] Quantum Dissipative Systems
    Milburn, G. J.
    CONTEMPORARY PHYSICS, 2014, 55 (01) : 46 - 47
  • [50] DISSIPATIVE QUANTUM HYDRODYNAMICS
    TURSKI, LA
    ACTA PHYSICA POLONICA B, 1995, 26 (07): : 1311 - 1318