Optimal working point in dissipative quantum annealing

被引:22
|
作者
Arceci, Luca [1 ]
Barbarino, Simone [1 ]
Rossini, Davide [2 ,3 ]
Santoro, Giuseppe E. [1 ,4 ,5 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[3] Ist Nazl Fis Nucl, Largo Pontecorvo 3, I-56127 Pisa, Italy
[4] CNR IOM Democritos Natl Simulat Ctr, Via Bonomea 265, I-34136 Trieste, Italy
[5] Abdus Salaam Int Ctr Theoret Phys, POB 586, I-34014 Trieste, Italy
关键词
ISING-MODEL; ADIABATIC EVOLUTION; SPIN-GLASS; SYSTEMS; ALGORITHM; DYNAMICS;
D O I
10.1103/PhysRevB.98.064307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the effect of a thermal environment on the quantum annealing dynamics of a transverse-field Ising chain. The environment is modeled as a single Ohmic bath of quantum harmonic oscillators weakly interacting with the total transverse magnetization of the chain in a translationally invariant manner. We show that the density of defects generated at the end of the annealing process displays a minimum as a function of the annealing time, the so-called optimal working point, only in rather special regions of the bath temperature and coupling strength plane. We discuss the relevance of our results for current and future experimental implementations with quantum annealing hardware.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Optimal quantum control in dissipative environments: General formalism and perturbative limits
    Jang, S
    Cao, JS
    LASER CONTROL AND MANIPULATION OF MOLECULES, 2002, 821 : 132 - 143
  • [22] Optimal quantum control in dissipative environments: General formalism and perturbative limits
    Jang, Seogjoo
    Cao, Jianshu
    ACS Symposium Series, 2002, 821 : 132 - 143
  • [23] Quantum optimal control of the driven dissipative two-level system
    Jirari, H.
    Rabitz, H.
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [24] Geometric optimal control and two-level dissipative quantum systems
    Bonnard, Bernard
    Sugny, Dominique
    CONTROL AND CYBERNETICS, 2009, 38 (04): : 1053 - 1080
  • [25] Effects of strain on the optimal annealing temperature of GaInNAsSb quantum wells
    Yuen, HB
    Bank, SR
    Bae, H
    Wistey, MA
    Harris, JS
    APPLIED PHYSICS LETTERS, 2006, 88 (22)
  • [26] Beyond quantum annealing: optimal control solutions to maxcut problems
    Pecci, Giovanni
    Wang, Ruiyi
    Torta, Pietro
    Mbeng, Glen Bigan
    Santoro, Giuseppe
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (04):
  • [27] Optimal quantum annealing: A variational shortcut-to-adiabaticity approach
    Passarelli, G.
    Fazio, R.
    Lucignano, P.
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [28] Local Field Response Method Working as Quasi-Quantum Annealing
    Tomaru, Tatsuya
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (06)
  • [29] Dissipative and nonequilibrium effects near a superconductor-metal quantum critical point
    Mitra, Aditi
    PHYSICAL REVIEW B, 2008, 78 (21)
  • [30] Optimal decoherence control in non-Markovian open dissipative quantum systems
    Cui, Wei
    Xi, Zai Rong
    Pan, Yu
    PHYSICAL REVIEW A, 2008, 77 (03)