Thermal annealing of graphene to remove polymer residues

被引:57
作者
Ahn, Youngkun [1 ]
Kim, Jungyoon [1 ]
Ganorkar, Shraddha [1 ]
Kim, Young-Hwan [1 ]
Kim, Seong-Il [1 ]
机构
[1] Korea Inst Sci & Technol, Nanophoton Ctr, Seoul 136791, South Korea
关键词
Thermal Annealing; Transferred Graphene; PMMA; Amorphous Carbon; Ar Ambience; CHEMICAL-VAPOR-DEPOSITION; POLY(METHYL METHACRYLATE); RAMAN-SPECTROSCOPY; BIAXIAL STRAIN; DEGRADATION; CONDUCTIVITY; RESOLUTION; SPECTRA;
D O I
10.1166/mex.2016.1272
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The process of graphene transfer generally involves a polymer support. Thermal annealing of graphene monolayers transferred from Cu to SiO2/Si substrate has been investigated to remove polymethyl methacrylate (PMMA) residue. The results show that a clean graphene surface without any deterioration is difficult to obtain by conventional thermal annealing method owing to the reaction between the graphene and the carbon by-products from the residual polymers. Although a higher annealing temperature facilitates removal of the polymer residue on graphene surface, it may also increase the amount of amorphous carbon. In this work, we examine various annealing conditions to remove the polymer residue. Annealing under H-2 ambience is effective in removing pendant functional groups in the polymer, yet increases the amorphous carbon also. In case of Ar ambience with high temperature, the polymer residue is efficiently removed without amorphous carbon.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 38 条
[1]   Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene [J].
Ahn, Youngkun ;
Kim, Hyein ;
Kim, Young-Hwan ;
Yi, Yeonjin ;
Kim, Seong-Il .
APPLIED PHYSICS LETTERS, 2013, 102 (09)
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Effect of Domain Boundaries on the Raman Spectra of Mechanically Strained Graphene [J].
Bissett, Mark A. ;
Izumida, Wataru ;
Saito, Riichiro ;
Ago, Hiroki .
ACS NANO, 2012, 6 (11) :10229-10238
[5]   Fabrication of a graphene field effect transistor array on microchannels for ethanol sensing [J].
Chen, Bangdao ;
Liu, Hongzhong ;
Li, Xin ;
Lu, Congxiang ;
Ding, Yucheng ;
Lu, Bingheng .
APPLIED SURFACE SCIENCE, 2012, 258 (06) :1971-1975
[6]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[7]   The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes [J].
Costache, Marius C. ;
Wang, Dongyan ;
Heidecker, Matthew J. ;
Manias, E. ;
Wilkie, Charles A. .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2006, 17 (04) :272-280
[8]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[9]   Electrons scattering and conductivity in monolayer graphene [J].
Firsova, Natalie E. ;
Ktitorov, Sergey A. .
APPLIED SURFACE SCIENCE, 2013, 267 :189-191
[10]   Mechanical properties of suspended graphene sheets [J].
Frank, I. W. ;
Tanenbaum, D. M. ;
Van der Zande, A. M. ;
McEuen, P. L. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (06) :2558-2561