High performance lithium-sulfur batteries with a facile and effective dual functional separator

被引:74
|
作者
Hao, Zhangxiang [1 ]
Yuan, Lixia [1 ]
Li, Zhen [1 ]
Liu, Jing [1 ]
Xiang, Jingwei [1 ]
Wu, Chao [1 ]
Zeng, Rui [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
Nafion/super P-modified separator; sulfur cathode; long-term cyclability; Li-S batteries; ENHANCED ELECTROCHEMICAL PERFORMANCE; HOLLOW CARBON NANOFIBERS; METAL-ORGANIC FRAMEWORK; COMPOSITE CATHODE; GRAPHENE OXIDE; POLYSULFIDES; ELECTRODE; NANOSHEETS; CHEMISTRY; PROGRESS;
D O I
10.1016/j.electacta.2016.03.166
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-sulfur (Li-S) batteries stand as an important candidate for next-generation high-energy secondary batteries due to its high specific capacity, low cost and environmental friendliness. However, practical application of Li-S batteries suffers from low rechargeability, poor rate capability and cycling instability of sulfur cathode, which can be mainly ascribed to the poor conductivity of sulfur and the dissolution of the intermediate polysulfides generated during discharge-charge cycles. In this work, a Nafion/super P-modified dual functional separator is designed to improve the long-term cycle stability and rate capability of the pure sulfur cathode. The electrostatic repulsion between the SO3 groups and the dissolved negative S-n(2) ions, and the trap and reutilizing effect of super P for polysulfides, provide double insurance to confine the polysulfides within the cathode side, leading to great improvement in both reversible capacity and cycling stability of the sulfur cathode as compared to the battery with pristine Celgard separator. With such dual functional separator, a simple elemental sulfur cathode with 70% S content delivers a high initial discharge capacity of 1087 mAh g (1) at 0.1C and a long-term cyclability with only 0.22% capacity fade per cycle over 250 cycles at 0.5C. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [41] Rational Method for Improving the Performance of Lithium-Sulfur Batteries: Coating the Separator with Lithium Fluoride
    Li, Chao
    Zhang, Peng
    Dai, Jianhui
    Shen, Xiu
    Peng, Yueying
    Zhang, Yiyong
    Zhao, Jinbao
    CHEMELECTROCHEM, 2017, 4 (06): : 1535 - 1543
  • [42] Lignin Nanoparticle-Coated Celgard Separator for High-Performance Lithium-Sulfur Batteries
    Zhang, Zengyao
    Yi, Shun
    Wei, Yuejia
    Bian, Huiyang
    Wang, Ruibin
    Min, Yonggang
    POLYMERS, 2019, 11 (12)
  • [43] S-doped mesoporous graphene modified separator for high performance lithium-sulfur batteries
    Ma, Xinlong
    Xu, Chenggen
    Yang, Yin
    Sun, Dong
    Zhao, Kai
    Lu, Changbo
    Jin, Peng
    Chong, Yiting
    Pruksawan, Sirawit
    Xiao, Zhihua
    Wang, Fuke
    MATERIALS REPORTS: ENERGY, 2024, 4 (03):
  • [44] Carbon-Tungsten Disulfide Composite Bilayer Separator for High Performance Lithium-Sulfur Batteries
    Ali, Shamshad
    Waqas, Muhammad
    Jing, Xiaopeng
    Chen, Ning
    Chen, Dongjiang
    Xiong, Jie
    He, Weidong
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (46) : 39417 - 39421
  • [45] High Performance Lithium-Sulfur Batteries with a Sustainable and Environmentally Friendly Carbon Aerogel Modified Separator
    Zhu, Lin
    You, Liangjun
    Zhu, Penghui
    Shen, Xiangqian
    Yang, Lezhi
    Xiao, Kesong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (01): : 248 - 257
  • [46] Cerium-Based MOF as a Separator Coating for High-Performance Lithium-Sulfur Batteries
    Su, Yuchen
    Wang, Wensheng
    Wang, Weikun
    Wang, Anbang
    Huang, Yaqin
    Guan, Yuepeng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)
  • [47] Boron Nitride Nanotube-Based Separator for High-Performance Lithium-Sulfur Batteries
    Kim, Hong-Sik
    Kang, Hui-Ju
    Lim, Hongjin
    Hwang, Hyun Jin
    Park, Jae-Woo
    Lee, Tae-Gyu
    Cho, Sung Yong
    Jang, Se Gyu
    Jun, Young-Si
    NANOMATERIALS, 2022, 12 (01)
  • [48] Ultrathin titanium carbide-modified separator for high-performance lithium-sulfur batteries
    Nguyen, Dang Le Tri
    Ho, Thi H.
    Nguyen, Tung Manh
    Nguyen, Thao P.
    Doan, Thi Luu Luyen
    Dang, Huyen Tran
    Tran, Minh Xuan
    CERAMICS INTERNATIONAL, 2024, 50 (24) : 54848 - 54855
  • [49] Hollow spherical Lanthanum oxide coated separator for high electrochemical performance lithium-sulfur batteries
    Qian, Xinye
    Zhao, Di
    Jin, Lina
    Shen, Xiangqian
    Yao, Shanshan
    Rao, Dewei
    Zhou, Youyuan
    Xi, Xiao ming
    MATERIALS RESEARCH BULLETIN, 2017, 94 : 104 - 112
  • [50] Multifunctional Vanadium Nitride-Modified Separator for High-Performance Lithium-Sulfur Batteries
    Liu, Sen
    Liu, Yang
    Zhang, Xu
    Shen, Maoqiang
    Liu, Xuesen
    Gao, Xinyue
    Hou, Linrui
    Yuan, Changzhou
    NANOMATERIALS, 2024, 14 (08)